Skip to main content
Log in

Synthesis and Electrophoretic Concentration of Hydroxyapatite Nanoparticles in Reverse Micelles of Oxyethylated Surfactant

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By photon correlation spectroscopy the formation of hydroxyapatite nanoparticles in reverse micelles of oxyethylated surfactant Tergitol NP-4 is studied depending on the solubilization capacity of a micellar solution. Stable organosols are obtained, the electrophoretic concentration and the separation of hydroxyapatite nanoparticles from the surfactant excess and synthesis by-products are performed in the presence of an anionic surfactant AOT. According to the transmission electron microscopy data, the shape of hydroxyapatite nanoparticles is elongated (length 40-80 nm, thickness 5-20 nm), which is well consistent with the n-averaged hydrodynamic diameter determined by photon correlation spectroscopy. The nanoparticles are positively charged; their ζ-potential changes from 10 mV to 42 mV, depending on the surfactant and solvent types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Dorozhkin. Materials, 2009, 2, 1975.

    Article  CAS  PubMed Central  Google Scholar 

  2. S. M. Barinov and V. S. Komlev. Calcium Phosphate Based Bioceramics. Nauka: M., 2005.

    Google Scholar 

  3. A. Szcześ, L. Hołysz, and E. Chibowski. Adv. Colloid Interface Sci., 2017, 249, 321.

  4. H. Zhou and J. Lee. Acta Biomater., 2011, 7, 2769.

    Article  CAS  PubMed  Google Scholar 

  5. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. Acta Biomater., 2013, 9, 7591.

  6. F. Zhang, Z.-H. Zhou, S.-P. Yang, L.-H. Mao, H.-M. Chen, and X.-B. Yu. Mater. Lett., 2005, 59, 1422.

  7. M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. Langer, and Mikos. Biomaterials, 1996, 17, 175.

    Article  CAS  PubMed  Google Scholar 

  8. M. Yu. Koroleva, E. Yu. Fadeeva, V. M. Shkinev, O. N. Katasonova, and E. V. Yurtov. Russ. J. Inorg. Chem., 2016, 61, 674.

    Article  CAS  Google Scholar 

  9. M. Uota, H. Arakawa, N. Kitamura, T. Yoshimura, J. Tanaka, and T. Kijima. Langmuir, 2005, 21, 4724.

    Article  CAS  PubMed  Google Scholar 

  10. D. Gopi, J. Indira, S. Nithiya, L. Kavitha, U. K. Mudali, and K. Kanimozhi. Bull. Mater. Sci., 2013, 36, 799.

    Article  CAS  Google Scholar 

  11. N. Pramanik and T. Imae. Langmuir, 2012, 28, 14018.

    Article  CAS  PubMed  Google Scholar 

  12. W. Ren, S.-P. Li, Y.-F. Wang, X.-Y. Cao, and X.-M. Chen. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2004, 19, 24.

    CAS  Google Scholar 

  13. G. C. Koumoulidis, A. P. Katsoulidis, A. K. Ladavos, P. J. Pomonis, C. C. Trapalis, A. T. Sdoukos, and T. C. Vaimakis. J. Colloid Interface Sci., 2003, 259, 254.

    Article  CAS  PubMed  Google Scholar 

  14. G. K. Lim, J. Wang, S. C. Ng, and L. M. Gan. Mater. Lett., 1996, 28, 431.

    Article  CAS  Google Scholar 

  15. G. K. Lim, J. Wang, S. C. Ng, and L. M. Gan, J. Mater. Chem., 1999, 9, 1635.

    CAS  Google Scholar 

  16. X. Ma, Y. Chen, J. Qian, Y. Yuan, and C. Liu. Mater. Chem. Phys., 2016, 183, 220.

    Article  CAS  Google Scholar 

  17. H. Li, M. Zhu, L. Li, and C. Zhou. J. Mater. Sci., 2008, 43, 384.

    Article  CAS  Google Scholar 

  18. T. Furuzono, D. Walsh, K. Sato, K. Sonoda, and J. Tanaka. J. Mater. Sci. Lett., 2001, 20, 111.

    Article  CAS  Google Scholar 

  19. Y. Sun, G. Guo, D. Tao, and Z. Wang. J. Phys. Chem. Solids, 2007, 68, 373.

    Article  CAS  Google Scholar 

  20. M. Cao, Y. Wang, C. Guo, Y. Qi, and C. Hu. Langmuir, 2004, 20, 4784.

    Article  CAS  PubMed  Google Scholar 

  21. K. Lin, J. Chang, R. Cheng, and M. Ruan. Mater. Lett., 2007, 61, 1683.

    Article  CAS  Google Scholar 

  22. A. I. Bulavchenko and P. S. Popovetskiy. Langmuir, 2010, 26, 736.

    Article  CAS  PubMed  Google Scholar 

  23. R. Kemp, R. Sanchez, K. J. Mutch, and P. Bartlett. Langmuir, 2010, 26, 6967.

    Article  CAS  PubMed  Google Scholar 

  24. G. D. J. Phillies. Anal. Chem., 1990, 62, 1049.

    Article  Google Scholar 

  25. T. Yu. Podlipskaya and A. I. Bulavchenko. Russ. J. Inorg. Chem., 2016, 61, 903.

    Article  CAS  Google Scholar 

  26. J. L. van der Minne and P. H. J. Hermanie. J. Colloid Sci., 1952, 7, 600.

    Article  Google Scholar 

  27. A. I. Bulavchenko, T. Yu. Podlipskaya, A. T. Arymbaeva, and M. G. Demidova. Russ. J. Phys. Chem. A, 2011, 85, 866.

    Article  CAS  Google Scholar 

  28. W. Van de Sande and A. Persoons. J. Phys. Chem., 1985, 89, 404.

    Article  Google Scholar 

Download references

Funding

The work was performed within the State Contract of the Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences for basic scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Podlipskaya.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 7, pp. 1179-1189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlipskaya, T.Y., Bulavchenko, A.I. Synthesis and Electrophoretic Concentration of Hydroxyapatite Nanoparticles in Reverse Micelles of Oxyethylated Surfactant. J Struct Chem 60, 1133–1142 (2019). https://doi.org/10.1134/S0022476619070151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619070151

Keywords

Navigation