Skip to main content
Log in

First Principles Study on Structurally Resolved Titanium Dioxide Nanoparticles Functionalized by Organic Ligands

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles representing those in dye-sensitized solar cell photoanodes are modeled by first principles calculations, employing a series of structurally resolved polyoxometalates functionalized with organic ligands via the phosphonate anchoring group as a modeling platform. Previous computational studies on titanium dioxide nanoparticles for dye-sensitized solar cells and water splitting systems are based on artificial cleaving of TiO2 from bulk crystals, which introduces potential various human-made errors. This manuscript focuses on structurally resolved titanium dioxide nanoparticles determined from X-ray diffraction experiments with a 10−3 Å resolution and demonstrates that charge transfer occurs from the organic ligands and oxygen atoms to the core titanium atoms. Also, different TiO2 nanoparticle geometries contribute to variation in the electronic and optical properties of the organic/TiO2 nanocomposite system. This computational work on structurally resolved molecularly functionalized titanium dioxide introduces a new way to model the TiO2 nanoparticle-based optoelectronic device, which eliminates the arbitrariness introduced during artificial cleaving and provides insights on the structure-property relationships of organic molecule-functionalized titanium dioxide nanoparticles for water splitting systems and dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan, and M. Grätzel. Nature, 1991, 353, 737–740. doi: https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  2. J. R. Swierk, D. D. Méndez-Hernández, N. S. McCool et al. Proc. Natl. Acad. Sci., USA. 2015, 112, 1681–1686. doi: https://doi.org/10.1073/pnas.1414901112

  3. J. R. Swierk and T. E. Mallouk. Chem. Soc. Rev., 2013, 42, 2357–2387. doi: https://doi.org/10.1039/C2CS35246J

    Article  CAS  PubMed  Google Scholar 

  4. S. Ardo and G. J. Meyer. Chem. Soc. Rev., 2009, 38, 115–164. doi: https://doi.org/10.1039/b804321n

    Article  CAS  Google Scholar 

  5. M. Grätzel. Nature, 2001, 414, 338–44. doi: https://doi.org/10.1038/35104607

    Article  Google Scholar 

  6. L. Sang, Y. Zhao, and C. Burda. Chem. Rev., 2014, 114, 9283–9318. doi: https://doi.org/10.1021/cr400629p

    Article  CAS  PubMed  Google Scholar 

  7. J. Rochford, D. Chu, A. Hagfeldt, and E. Galoppini. J. Am. Chem. Soc., 2007, 129, 4655–4665. doi: https://doi.org/10.1021/ja068218u

    Article  CAS  PubMed  Google Scholar 

  8. M. Ferus, L. Kavan, M. Zukalová et al. J. Phys. Chem. C, 2014, 118, 26845–26850. doi: https://doi.org/10.1021/jp5090668

    Article  CAS  Google Scholar 

  9. S. Civiš, M. Ferus, M. Zukalová et al. J. Phys. Chem. C, 2015, 119, 3605–3612. doi: https://doi.org/10.1021/jp512059b

    Article  CAS  Google Scholar 

  10. F. Labat, T. Le Bahers, I. Ciofini, and C. Adamo. Acc. Chem. Res., 2012, 45, 1268–1277. doi: https://doi.org/10.1021/ar200327w

    Article  CAS  PubMed  Google Scholar 

  11. M. Pastore and and F. De Angelis. J. Am. Chem. Soc., 2015, 137, 5798–5809. doi: https://doi.org/10.1021/jacs.5b02128

    Article  CAS  Google Scholar 

  12. F. De Angelis, C. Di Valentin, S. Fantacci et al. Chem. Rev., 2014, 114, 9708–9753. doi: https://doi.org/10.1021/cr500055q

    Article  CAS  PubMed  Google Scholar 

  13. M. D. Kärkäs, O. Verho, E. V. Johnston, and B. Åkermark. Chem. Rev., 2014, 114, 11863–2001. doi: https://doi.org/10.1021/cr400572f

    Article  CAS  PubMed  Google Scholar 

  14. L. Zhang, J. M. Cole, and C. Dai. ACS Appl. Mater. Interfaces, 2014, 6, 7535–7546. doi: https://doi.org/10.1021/am502186k

    Article  CAS  PubMed  Google Scholar 

  15. E. Ronca, M. Pastore, L. Belpassi et al. Energy Environ. Sci., 2013, 6, 183. doi: https://doi.org/10.1039/c2ee23170k

    Article  CAS  Google Scholar 

  16. F. Ambrosio, N. Martsinovich, and A. Troisi. J. Phys. Chem. Lett., 2012, 3, 1531–1535. doi: https://doi.org/10.1021/jz300520p

    Article  CAS  PubMed  Google Scholar 

  17. S. Zhang, W. Zhou, Y. Ma et al. Nano Lett., 2017, 17, 3434–3440. doi: https://doi.org/10.1021/acs.nanolett.7b00297

    Article  CAS  PubMed  Google Scholar 

  18. S. Zhang, Z. Yan, Y. Li et al. Angew. Chemie, 2015, 127, 3155–3158. doi: https://doi.org/10.1002/ange.201411246

    Article  Google Scholar 

  19. J. B. Benedict and P. Coppens. J. Am. Chem. Soc., 2010, 132, 2938–2944. doi: https://doi.org/10.1021/ja909600w

    Article  CAS  PubMed  Google Scholar 

  20. P. Coppens, Y. Chen, and E. Trzop. Chem. Rev., 2014, 114, 9645–9661. doi: https://doi.org/10.1021/cr400724e

    Article  CAS  PubMed  Google Scholar 

  21. J. B. Benedict, R. Freindorf, E. Trzop et al. J. Am. Chem. Soc., 2010, 132, 13669–71. doi: https://doi.org/10.1021/ja106436y

    Article  CAS  PubMed  Google Scholar 

  22. R. C. Snoeberger, K. J. Young, J. Tang et al. J. Am. Chem. Soc., 2012, 134, 8911–8917. doi: https://doi.org/10.1021/ja301238t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. D. Sokolow, E. Trzop, Y. Chen et al. J. Am. Chem. Soc., 2012, 134, 11695–11700. doi: https://doi.org/10.1021/ja303692r

    Article  CAS  PubMed  Google Scholar 

  24. M. W. Kryman, J. N. Nasca, D. F. Watson, and M. R. Detty. Langmuir, 2016, 32, 1521–1532. doi: https://doi.org/10.1021/acs.langmuir.5b04275

    Article  CAS  PubMed  Google Scholar 

  25. W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley. Coord. Chem. Rev., 2004, 248, 1363–1379. doi: https://doi.org/10.1016/j.ccr.2004.01.007

    Article  CAS  Google Scholar 

  26. J. Cui, J. Lu, X. Xu et al. J. Phys. Chem. C, 2014, 118, 16433–16440. doi: https://doi.org/10.1021/jp410829c

    Article  CAS  Google Scholar 

  27. Y. Chen, E. Trzop, J. D. Sokolow, and P. Coppens. Chem. — A Eur. J., 2013, 19, 16651–16655. doi: https://doi.org/10.1002/chem.201302012

    Article  CAS  Google Scholar 

  28. K. N. Jarzembska, Y. Chen, J. N. Nasca et al. Phys. Chem. Chem. Phys., 2014, 16, 15792. doi: https://doi.org/10.1039/C4CP02509A

    Article  CAS  PubMed  Google Scholar 

  29. B. Delley. J. Chem. Phys., 2000, 113, 7756–7764. doi: https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  30. A. Tkatchenko and M. Scheffler. Phys. Rev. Lett., 2000, 102, 073005. doi: https://doi.org/10.1103/PhysRevLett.102.073005

    Article  CAS  Google Scholar 

  31. F. Nunzi, E. Mosconi, L. Storchi et al. Energy Environ. Sci., 2013, 6, 1221. doi: https://doi.org/10.1039/c3ee24100a

    Article  CAS  Google Scholar 

  32. S. K. Wallace and K. P. Mckenna. Adv. Mater. Interfaces, 2014, 1, 1400078. doi: https://doi.org/10.1002/admi.201400078

    Article  CAS  Google Scholar 

  33. Y. Chen, K. N. Jarzembska, E. Trzop et al. Chem. a Eur. J., 2015, 21, 11538–11544. doi: https://doi.org/10.1002/chem.201500961

    Article  CAS  Google Scholar 

  34. L. Zhang and J. M. Cole. ACS Appl. Mater. Interfaces, 2014, 6, 15760–15766. doi: https://doi.org/10.1021/am502687k

    Article  CAS  PubMed  Google Scholar 

  35. L. Zhang, J. M. Cole, P.G. Waddell et al. ACS Sustain Chem. Eng., 2013, 1, 1440–1452. doi: https://doi.org/10.1021/sc400183t

    Article  CAS  Google Scholar 

  36. M. Planells, L. Pellejà, J. N. Clifford et al. Energy Environ. Sci., 2011, 4, 1820. doi: https://doi.org/10.1039/c1ee01060c

    Article  CAS  Google Scholar 

  37. C. F. A. Negre, K. J. Young, M. B. Oviedo et al. J. Am. Chem. Soc., 2014, 136, 16420–9. doi: https://doi.org/10.1021/ja509270f

    Article  CAS  PubMed  Google Scholar 

  38. J. D. Sokolow, E. Trzop, Y. Chen et al. J. Am. Chem. Soc., 2012, 134, 11695–11700. doi: https://doi.org/10.1021/ja303692r

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Additional information

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 4, pp. 697–703.

Electronic Supplementary Material

10947_2019_1182_MOESM1_ESM.pdf

Supplementary Materials to: First Principles Study on Structurally Resolved Titanium Dioxide Nanoparticles Functionalized by Organic Ligands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, L. & Li, J. First Principles Study on Structurally Resolved Titanium Dioxide Nanoparticles Functionalized by Organic Ligands. J Struct Chem 60, 671–677 (2019). https://doi.org/10.1134/S002247661904019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661904019X

Keywords

Navigation