Skip to main content
Log in

Structure and Thermodynamic Characteristics of Impurity Centers in Lithium-Doped Cadmium Oxide: an Ab Initio Paw-Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The ab initio projector augmented wave (PAW) method is used to calculate the electronic structure of Li-doped cadmium oxide with NaCl structure. The preference energy for Li atoms in interstitial sites and the energy of impurity oxidation are calculated. Interstitial positions for Li atoms are shown to be stable under thermodynamic equilibrium, but Li atoms can substitute Cd atoms in presence of vacancies in the oxygen sublattice. We consider the following complexes: one Li atom in the interstitial site and the other Li atom in Cd position; one Li atom in Cd position and one oxygen vacancy; a pair of oxygen vacancies; and show that these complexes are formed to have the shortest possible distance between their components. The band gap substantially decreases when Li atoms occupy interstitial sites to explain considerable increase of experimental conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Madelung. Semiconductors: Physics of Non-Tetrahedrally Bonded Binary Compounds III Science and Technology, Vol. 17, Germany, Berlin: Springer, 1984.

    Google Scholar 

  2. O. G. Daza, A. A. Readigos, J. Campos, M. T. S. Nair, and P. K. Nair. Mod. Phys. Lett. B, 2001, 17,609.

    Article  Google Scholar 

  3. Z. Zhao, D. Morel, and C. Ferekides. Thin Solid Films, 2002, 413,203.

    Article  CAS  Google Scholar 

  4. R. Chandiramouli and B. Jeyaprakash. Solid State Sci., 2013, 16,102.

    Article  CAS  Google Scholar 

  5. R. J. Deokate, S. V. Salunkhe, G. L. Agawane, et al. J. Alloys Compd., 2010, 496,357.

    Article  CAS  Google Scholar 

  6. A. Dakhel. Solid State Sci., 2011, 13, 1000.

    Article  CAS  Google Scholar 

  7. A. Dakhel. Mater. Res., 2015, 18,222.

    Article  CAS  Google Scholar 

  8. K. Murali, A. Kalaivanan, S. Perumal, and N. N. Pillai. J. Alloys Compd., 2010, 503,350.

    Article  CAS  Google Scholar 

  9. K. Siraj, M. Rahman, S. Hussain, M. Rafique, and S. Anjum. J. Alloys Compd., 2011, 509, 6756.

    Article  CAS  Google Scholar 

  10. A. Dakhel and M. Bououdina. Mater. Sci. Semicond. Process, 2014, 26,527.

    Article  CAS  Google Scholar 

  11. T. Ahmad, S. Khatoon, and R. Phulc. Solid State Phenom., 2013, 201,103.

    Article  CAS  Google Scholar 

  12. C. A. Francis, D. M. Detert, G. Chen, et al. Appl. Phys. Lett., 2015, 106, 022110.

    Article  CAS  Google Scholar 

  13. M. Benhaliliba, C. E. Benouis, A. Tiburcio-Silver, et al. J. Luminescence, 2012, 132, 2653.

    Article  CAS  Google Scholar 

  14. H. Colak and O. Turcoglu. J. Ceram. Proces. Res., 2013, 14,616.

    Google Scholar 

  15. A. Dakhel. Thin Solid Films, 2010, 518, 1712.

    Article  CAS  Google Scholar 

  16. C. Aydin, O. A. Al Hartomy, A. A. Al Ghamdi, et al. J. Electroceram., 2012, 29,155.

    Article  CAS  Google Scholar 

  17. H. Colak and O. Turcoglu. Mater. Sci. Semicond. Process, 2013, 15,712.

    Article  CAS  Google Scholar 

  18. K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, and K. Ramamurthi. Mater. Sci. Semicond. Process, 2015, 40,879.

    Article  CAS  Google Scholar 

  19. R. de Biasi and M. Grillo. J. Alloys Compd., 2009, 485,26.

    Article  CAS  Google Scholar 

  20. L. Gao, S. Wang, R. Liu, et al. J. Alloys Compd., 2016, 662,213.

    Article  CAS  Google Scholar 

  21. T. Aswani, B. Babu, V. P. Manjari, et al. Spectrochim. Acta, Part A, 2014, 121,544.

    Article  CAS  Google Scholar 

  22. A. A. Dakhel. Adv. OptoElectron., 2013, 2013, 804646.

    Article  CAS  Google Scholar 

  23. A. Salem. Eur. Phys. J. Plus, 2014, 129,263.

    Article  CAS  Google Scholar 

  24. A. Alemi, S. Khademinia, S. W. Joo, et al. J. Appl. Chem., 2014, 8,35.

    Google Scholar 

  25. E. Sachet, C. T. Shelton, J. S. Harris, et al. Nature Mater., 2015, 14,414.

    Article  CAS  Google Scholar 

  26. Sh. Wang, Q. Lu, L. Li, et al. Scripta Mater., 2013, 69,533.

    Article  CAS  Google Scholar 

  27. A. A. Dakhel. Mater. Res., 2016, 19,379.

    Article  CAS  Google Scholar 

  28. R. Gupta, Z. Serbetci, and F. Yakuphanoglu. J. Alloys Compd., 2012, 515,96.

    Article  CAS  Google Scholar 

  29. B. Sahin and F. Bayansal. Philos. Mag., 2014, 94, 4174.

    Google Scholar 

  30. P. Velusamy, R. R. Babu, and K. Ramamurthi. AIP Conf. Proc., 2016, 1731, 080022.

    Article  CAS  Google Scholar 

  31. P. D. C. King, T. D. Veal, A. Schleife, et al. Phys. Rev. B, 2009, 79, 205205.

    Article  CAS  Google Scholar 

  32. A. Schleife, F. Fuchs, J. Furthmueller, and F. Bechstedt. Phys. Rev. B, 2006, 73, 245212.

    Article  CAS  Google Scholar 

  33. A. Schleife, C. Roedl, F. Fuchs, J. Furthmueller, et al. J. Korean Phys. Soc., 2008, 53, 2811.

    Article  CAS  Google Scholar 

  34. P. Srivastava and Y. Sharma. Adv. Mat. Lett., 2011, 2,290.

    Article  CAS  Google Scholar 

  35. G. Yao, X. An, H. Lei, Y. Fu, and W. Wu. Model. Numer. Simul. Mater. Sci., 2013, 3,16.

    Google Scholar 

  36. F. C. Zhang, H. W. Cui, X. X. Ruan, and W. H. Zhang. J. Chem. Pharm. Res., 2014, 6, 1658.

    Google Scholar 

  37. Sh. Jin, Y. Yang, J. E. Medvedeva, et al. J. Am. Chem. Soc., 2004, 126, 13787.

    Article  CAS  PubMed  Google Scholar 

  38. Z. Nabi, S. Amari, S. Mecabih, et al. Results in Physics, 2013, 3,205.

    Article  Google Scholar 

  39. G. Kresse and J. Hafner. Phys. Rev. B, 1993, 47, 558

    Article  CAS  Google Scholar 

  40. G. Kresse and J. Furthmuller. Phys. Rev. B, 1996, 54, 11169.

    Article  CAS  Google Scholar 

  41. J. P. Perdew, S. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  42. P. E. Blöchl, O. Jepsen, and O. K. Anderson. Phys. Rev. B, 1994, 49, 16223.

    Article  Google Scholar 

  43. C. V. der Walle and J. Neugebauer. J. Appl. Phys., 2004, 95, 3851.

    Article  CAS  Google Scholar 

  44. J. Juhasz, S. Igaz, B. Jover, and Z. Szabo. Z. Naturforsch., 1987, 42b,746.

    Article  Google Scholar 

  45. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Phys. Rev. B, 1998, 57, 1505.

    Article  CAS  Google Scholar 

  46. P. Erhart, K. Albe, and A. Klein. Phys. Rev. B, 2006, 73, 205203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Shein.

Additional information

Original Russian Text © 2018 V. P. Zhukov, I. R. Shein.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 2, pp. 265–272, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.P., Shein, I.R. Structure and Thermodynamic Characteristics of Impurity Centers in Lithium-Doped Cadmium Oxide: an Ab Initio Paw-Study. J Struct Chem 59, 253–260 (2018). https://doi.org/10.1134/S0022476618020014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618020014

Keywords

Navigation