Skip to main content
Log in

Theoretical predictions on the structure and d-AO-based aromaticity of Re3F 2+/0/4−3 , Re3F3X+ (X = Li, Na, K), and Re3F3Y2+ (Y = Be, Mg, Ca) clusters

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure and chemical bonding in Re3F 2+/0/4−3 clusters are investigated using density functional theory (DFT) calculations. Out research results show that the ground state for the Re3F 2+/0/4−3 clusters is found to be triplet state 3A′1 with the D3h symmetry, quintet state 5A′ with the C s symmetry, and quintet state 5A′1 with the D3h symmetry, respectively. A detailed molecular orbital (MO) analysis reveals that the Re3F2+3 (D3h, 3A′1) dication possesses multiple (πF and partial δRe) aromaticity that is respectively responsible for the triangular F3 framework and the triangular Re3 framework in the Re3F2+3 (D3h, 3A′1) dication. The neutral Re3F3 (C s , 5A′) cluster possesses partial δ-aromaticity that is responsible for the triangular Re3 framework in the Re3F3 (C s , 5A′) cluster. The Re3F4−3 (D3h, 5A′1) anion possesses multiple (σ and partial δ) aromaticity that is responsible for the triangular Re3 framework in the Re3F4−3 (D3h, 5A′1) cluster. We also examined their hexagonal pyramidal-type Re3F3X+ (C3v, 1A′1) (X = Li, Na, K) and Re3F3Y2+ (C3v, 1A′1) (Y = Be, Mg, Ca) complexes containing the Re3F3 (D3h, 1A′1) ligand to reveal that the Re3F3 (C3h, 1A′1) structural unit is perfectly preserved in these Re3F3X+ (C3v, 1A′1) and Re3F3Y2+ (C3v, 1A′1) complexes also having the corresponding d-orbital aromatic characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, and J. S. Wood, Science, 145, 1305–1307 (1964).

    Article  CAS  Google Scholar 

  2. F. A. Cotton and J. T. Mague, Inorg. Chem., 3, 1402–1407 (1964).

    Article  CAS  Google Scholar 

  3. F. A. Cotton and S. J. Lippard, Inorg. Chem., 4, 59–65 (1965).

    Article  CAS  Google Scholar 

  4. M. J. Bennett, F. A. Cotton, and B. M. Foxman, Inorg. Chem., 7, 1563–1569 (1968).

    Article  CAS  Google Scholar 

  5. K. Rinke and H. Schäfer, Angew. Chem., 77, 131 (1965).

    Article  CAS  Google Scholar 

  6. H. Schäfer, K. Rinke, and H. Rabeneck, Z. Anorg. Allg. Chem., 403, 23–34 (1974).

    Article  Google Scholar 

  7. K. Rinke, M. Klein, and H. Schäfer, J. Less–Common Met., 12, 497–503 (1967).

    Article  CAS  Google Scholar 

  8. A. P. Sergeeva and A. I. Boldyrev, Comm. Inorg. Chem., 31, 2–12 (2010).

    Article  CAS  Google Scholar 

  9. P. F. Week, A. P. Sergeeva, E. Kim, A. I. Boldyrev, and K. R. Czerwinski, Inorg. Chem., in press.

  10. L. Alvarbo-Soto, R. Ramirez-Tagle, and R. Arratia-Perez, Chem. Phys. Lett., 467, 94–96 (2008).

    Article  Google Scholar 

  11. L. Alvarbo-Soto, R. Ramirez-Tagle, and R. Arratia-Perez, J. Phys. Chem. A, 113, 1671–1673 (2009).

    Article  Google Scholar 

  12. A. C. Tsipis, I. G. Depastas, E. E. Karagiannis, and C. A. Tsipis, J. Comput. Chem., 31, 431–446 (2010).

    CAS  Google Scholar 

  13. J. A. Moulijn and J. C. Mol, J. Mol. Catal., 46, 1–14 (1988).

    Article  Google Scholar 

  14. J. C. Mol, Catal. Today, 51, 289–299 (1999).

    Article  CAS  Google Scholar 

  15. W. A. Herrmann, J. G. Kuchler, J. K. Felixberger, E. Herdtweck, and W. Wagner, Angew. Chem. Int. Ed., 27, 394–396 (1988).

    Article  Google Scholar 

  16. B. B. Averkiev and A. I. Boldyrev, J. Phys. Chem. A, 111, 12864–12866 (2007).

    Article  CAS  Google Scholar 

  17. B. Wang, H. J. Zhai, X. Huang, and L. S. Wang, J. Phys. Chem. A, 112, 10962–10967 (2008).

    Article  CAS  Google Scholar 

  18. H. Tanaka, S. Neukemans, E. Jansses, R. E. Silverans, and P. Lievens, J. Am. Chem. Soc., 125, 2862/2863 (2003).

    Article  CAS  Google Scholar 

  19. T. Höltzl, E. Janssens, N. Veldeman, T. Veszprémi, P. Lievens, and M. T. Nguyen, Chem. Phys. Chem., 9, 833–838 (2008).

    Article  Google Scholar 

  20. T. Höltzl, N. Veldeman, T. Veszprémi, P. Lievens, and M. T. Nguyen, Chem. Phys. Lett., 469, 304–307 (2009).

    Article  Google Scholar 

  21. C. S. Wannere, C. Corminboeuf, Z. X. Wang, M. D. Wodrich, R. B. King, and P. v. R. Schlyer, J. Am. Chem. Soc., 127, 5701–5705 (2005).

    Article  CAS  Google Scholar 

  22. W. J. Chen, H. J. Zhai, X. Huang, and L. S. Wang, Chem. Phys. Lett., 512, 49–53 (2011).

    Article  CAS  Google Scholar 

  23. H. J. Zhai, W. J. Chen, X. Huang, and L. S. Wang, RSC. Adv., 2, 2707–2712 (2012).

    Article  CAS  Google Scholar 

  24. X. J. Feng, T. T. Cao, L. X. Zhao, Y. M. Lei, and Y. Luo, Eur. Phys. J. D., 50, 285–288 (2008).

    Article  CAS  Google Scholar 

  25. Y. Zubarev, B. B. Averkiev, H. J. Zhai, L. S. Wang, and A. I. Boldyrev, Phys. Chem. Chem. Phys., 10, 257–267 (2008).

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, P. Revision C.01 ed., Gaussian, Inc., Pittsburgh, PA (2003).

    Google Scholar 

  27. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  29. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  30. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  31. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735–747 (1985).

    Article  CAS  Google Scholar 

  32. H. J. Zhai, B. B. Averkiev, D. Y. Zubarev, L. S. Wang, and A. I. Boldyrev, Angew. Chem., 119, 4355–4358 (2007).

    Article  Google Scholar 

  33. B. Jin and Q. Jin, Comput. Theor. Chem., 1013, 130–135 (2013).

    Article  CAS  Google Scholar 

  34. H. J. Zhai, B. B. Averkiev, D. Y. Zubarev, L. S. Wang, and A. I. Boldyrev, Angew. Chem. Int. Ed., 46, 4277–4280 (2007).

    Article  CAS  Google Scholar 

  35. A. I. Boldyrev and L. S. Wang, Chem. Rev., 105, 3716–3757 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jin.

Additional information

Original Russian Text © 2017 B. Jin, Q. Jin, F.-K. Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, B., Jin, Q. & Jin, F.K. Theoretical predictions on the structure and d-AO-based aromaticity of Re3F 2+/0/4−3 , Re3F3X+ (X = Li, Na, K), and Re3F3Y2+ (Y = Be, Mg, Ca) clusters. J Struct Chem 58, 1275–1285 (2017). https://doi.org/10.1134/S0022476617070034

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070034

Keywords

Navigation