Skip to main content
Log in

Simulation of glycyrrhizic acid associates with cholesterol in methanol

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

There are experimental evidences that in the methanol solution of glycyrrhizic acid (GA) and cholesterol, the cholesterol molecules have two different types of the environment. One corresponds to free molecules and another corresponds to the molecules associated with GA. However, the nature of these associates remains unclear. The all-atom molecular dynamics simulation of GA solutions in methanol is performed. It is shown that, contrary to aqueous solutions, GA in methanol does not form small stable clusters, even in the presence of cholesterol. The arising associates do not have distinct structures and exist for no longer than dozens of nanoseconds. The concentrations of these clusters and their stability constants are estimated. It is necessary to assume the existence of larger-scale associates to explain the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Tolstikov, L. A. Boltina, R. M. Kondratenko, et al., Glycyrrhiza: Biodiversity, Chemistry, and Application in Medicine [in Russian], NP “Geo” Academic Publishing House, Novosibirsk (2007).

    Google Scholar 

  2. K. C. James and J. B. Stanford, J. Pharm. Pharmacol., 5, 445–450 (1962).

    Article  Google Scholar 

  3. T. G. Tolstikova, M. V. Khvostov, A. O. Bryzgalov, A. V. Dushkin, and E. S. Meteleva, Biomed. Khim., 56, No. 2, 187–194 (2010).

    Article  CAS  Google Scholar 

  4. N. E. Polyakov and T. V. Leshina, The Open Conf. Proc. J., 2, 64–72 (2011).

    Article  CAS  Google Scholar 

  5. V. A. Vavilin, N. F. Salakhutdinov, Yu. I. Ragino, N. E. Polyakov, M. B. Taraban, T. V. Leshina, E. M. Stakhneev, V. V. Lyakhovich, Yu. P. Nikitin, and G. A. Tolstikov, Biomed. Chem., 54, 301–313 (2008).

    CAS  Google Scholar 

  6. Yu. I. Ragin, V. A. Vavilin, N. F. Salakhutdino, S. I. Makarov, E. M. Stakhneva, O. G. Safronova, Yu. P. Nikitin, and G. A. Tolstikov, Bull. Exp. Biol. Med., 145, 285–287 (2008).

    Google Scholar 

  7. V. S. Kornievskaya, A. I. Kruppa, N. E. Polyakov, and T. V. Leshina, J. Inclusion Phenom. Macrocyclic Chem., 60, 123–130 (2007).

    Article  Google Scholar 

  8. H. Hibasami, H. Iwase, K. Yoshioka, and H. Takahashi, Int. J. Mol. Med., 17, 215–219 (2006).

    CAS  Google Scholar 

  9. S. Nafisi, F. Manouchehri, and M. Bonsaii, J. Photochem. Photobiol., 111, 27–34 (2012).

    Article  CAS  Google Scholar 

  10. N. E. Polyakov, V. K. Khan, M. B. Taraban, et al., J. Phys. Chem. B, 112, 4435–4440 (2008).

    Article  CAS  Google Scholar 

  11. M. V. Zelikman, A. V. Kim, N. N. Medvedev, O. Yu. Selyutina, and N. E. Polyakov, J. Struct. Chem., 56, No. 1, 67–76 (2015).

    Article  CAS  Google Scholar 

  12. O. Yu. Gluschenko, N. E. Polyakov, and T. V. Leshina, Appl. Magn. Reson., 41, 283–294 (2011).

    Article  CAS  Google Scholar 

  13. S. Sakamoto et al., Biochim. Biophys. Acta, Biomembr., 1828, No. 4, 1271–1283 (2013).

    Article  CAS  Google Scholar 

  14. E. Tykarska and S. Sobiak, Cryst. Growth Des., 12, No. 4, 2133–2137 (2012).

    Article  CAS  Google Scholar 

  15. G. A. Tolstikov et al., Rus. J. Bioorg. Chem., 23, No. 9, 691–709 (1997).

    CAS  Google Scholar 

  16. M. Kondo et al., J. Soc. Cosmet. Chem., 37, No. 3, 177–189 (1986).

    CAS  Google Scholar 

  17. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem., 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  18. K. N. Kirschner, A. B. Yongye, S. M. Tschampel, C. R. Daniels, B. L. Foley, and R. J. Woods, J. Comput. Chem., 29, 622–655 (2008).

    Article  CAS  Google Scholar 

  19. J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling, J. Chem. Theory Comput., 11, 3696–3713 (2015).

    Article  CAS  Google Scholar 

  20. B. Chen, J. J. Potoff, and J. I. Siepmann, J. Phys. Chem. B, 105, 3093–3104 (2001).

    Article  CAS  Google Scholar 

  21. S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, in: Solving Software Challenges for Exascale, S. Markidis and E. Laure (eds.), Springer International (2015), pp. 3–27.

    Google Scholar 

  22. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics, 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  23. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem., 26, No. 16, 1701–1718 (2005).

    Article  Google Scholar 

  24. G. G. Malenkov and D. L. Tytik, in: Molecular Dynamics Method in Physical Chemistry [in Russian], Yu. K. Tovbin (ed.), Nauka, Moscow (1996), pp. 204–233.

    Google Scholar 

  25. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed., MIT Press and McGraw-Hill (2001).

    Google Scholar 

  26. M. V. Zelikman, A. V. Kim, and N. N. Medvedev, J. Struct. Chem., 57, No. 5, 940–946 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Additional information

Original Russian Text © 2017 A. V. Anikeenko, M. V. Zelikman, E. D. Kadtsyn, N. N. Medvedev.

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 285–292, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeenko, A.V., Zelikman, M.V., Kadtsyn, E.D. et al. Simulation of glycyrrhizic acid associates with cholesterol in methanol. J Struct Chem 58, 268–275 (2017). https://doi.org/10.1134/S002247661702007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661702007X

Keywords

Navigation