Skip to main content

Molecular Dynamics Simulations of N-Acetyl-p-aminophenol Molecules Embedded in High-Density Lipoprotein

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

  • 638 Accesses

Abstract

N-Acetyl-p-aminophenol, well known as paracetamol or acetaminophen, is widely used as a pain reliever or a fever reducer. In our computer studies, we embedded various numbers of acetaminophen molecules into the high-density lipoprotein (HDL) aggregate. The calculations were performed, in water environment, for four temperatures (T = 290, 300, 310, and 320 K), including a physiological one T = 310 K.

The structural and dynamical observables of acetaminophen (mean square displacement, diffusion coefficient, Lindemann index, and radial distribution function) are presented and discussed. We have found that HDL adapts its shape to the size of embedded paracetamol cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dar AI, Saxena RC (2013) Novel herbs for liver disorders: paracetamol induced hepatotoxicity and its herbal remedy. LAP LAMBERT Academic, Saarbrücken

    Google Scholar 

  2. Pacifici GM, Allegaert K (2015) Clinical pharmacology of paracetamol in neonates: a review. Curr Ther Res Clin Exp 77:24–30. doi:10.1016/j.curtheres.2014.12.001

    Article  Google Scholar 

  3. de Fays L, Van Malderen K, De Smet K, Sawchik J, Verlinden V, Hamdani J, Dogne J-M, Dan B (2015) Use of paracetamol during pregnancy and child neurological development. Dev Med Child Neurol 57:718–724. doi:10.1111/dmcn.12745

    Article  Google Scholar 

  4. Kontush A, Chapman MJ (2012) High-density lipoproteins structure, metabolism, function, and therapeutics. Wiley, Hoboken

    Google Scholar 

  5. Fielding CJ (2007) High-density lipoproteins: from basic biology to clinical aspects. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Balder J-W, Staels B, Kuivenhoven JA (2013) Pharmacological interventions in human HDL metabolism. Curr Opin Lipidol 24:500–509. doi:10.1097/MOL.0000000000000018

    Article  Google Scholar 

  7. Holzer M, Trieb M, Konya V, Wadsack C, Heinemann A, Marsche G (2013) Aging affects high-density lipoprotein composition and function. Biochim Biophys Acta 1831:1442–1448. doi:10.1016/j.bbalip.2013.06.004

    Article  Google Scholar 

  8. Phillips MC (2013) Thematic review series: high density lipoprotein structure, function, and metabolism new insights into the determination of HDL structure by apolipoproteins. J Lipid Res 54:2034–2048. doi:10.1194/jlr.R034025

    Article  Google Scholar 

  9. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  10. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, New York

    MATH  Google Scholar 

  12. Dawid A, Gburski Z (1999) Interaction-induced light scattering in xenon clusters: molecular dynamics study. J Mol Struct 482:271–276. doi:10.1016/S0022-2860(98)00668-1

    Article  ADS  Google Scholar 

  13. Gorny K, Raczynski P, Dendzik Z, Gburski Z (2015) Odd-even effects in the dynamics of liquid crystalline thin films on the surface of single walled carbon and silicon carbide nanotubes: computer simulation study. J Phys Chem C 119:19266–19271. doi:10.1021/acs.jpcc.5b05961

    Article  Google Scholar 

  14. Xu X-T, Tang F-L, Xue H-T, Yu W-Y, Zhu L, Rui Z-Y (2015) Molecular dynamics simulations of void shrinkage in gamma-TiAl single crystal. Comput Mater Sci 107:58–65. doi:10.1016/j.commatsci.2015.05.007

    Article  Google Scholar 

  15. Dawid A, Gburski Z (2003) Rayleigh light scattering in fullerene covered by a spherical argon film—a molecular dynamics study. J Phys Condens Matter 15:2399–2405. doi:10.1088/0953-8984/15/14/315

    Article  ADS  Google Scholar 

  16. Volz SG, Chen G (1999) Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl Phys Lett 75:2056–2058. doi:10.1063/1.124914

    Article  ADS  Google Scholar 

  17. Dendzik Z, Kosmider M, Sokól M (2008) Dielectric relaxation of water clusters encapsulated in carbon nanotubes—computer simulation study. J Non-Cryst Solids 354:4300–4303. doi:10.1016/j.jnoncrysol.2008.06.042

    Article  ADS  Google Scholar 

  18. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater 50:61–73. doi:10.1016/S1359-6454(01)00329-9

    Article  Google Scholar 

  19. Gburski Z, Zerda T (1980) Vibrational dephasing and intermolecular interactions in liquids. Acta Phys Pol A 57:447–454

    Google Scholar 

  20. Berneche S, Roux B (2000) Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys J 78:2900–2917

    Article  Google Scholar 

  21. Raczynski P, Dawid A, Gburski Z (2006) The dynamics of cholesterol in cholesterol-phospholipid assembly localized near carbon nanotube surface: MD study. J Mol Struct 792:212–215. doi:10.1016/j.molstruc.2006.01.063

    Article  ADS  Google Scholar 

  22. Greiner M, Elts E, Schneider J, Reuter K, Briesen H (2014) Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields. J Cryst Growth 405:122–130. doi:10.1016/j.jcrysgro.2014.07.046

    Article  ADS  Google Scholar 

  23. Raczyński P, Górny K, Dawid A, Gburski Z (2014) Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation. Arch Biochem Biophys 554:6–10. doi:10.1016/j.abb.2014.04.014

    Article  Google Scholar 

  24. Dendzik Z, Górny K, Gburski Z (2009) Cooperative dipolar relaxation of a glycerol molecular cluster in nanoscale confinement—a computer simulation study. J Phys Condens Matter 21:425101

    Article  ADS  Google Scholar 

  25. Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768. doi:10.1021/jp051771y

    Article  Google Scholar 

  26. Kosmider M, Dendzik Z, Palucha S, Gburski Z (2004) Computer simulation of argon cluster inside a single-walled carbon nanotube. J Mol Struct 704:197–201. doi:10.1016/j.molstruc.2004.02.050

    Article  ADS  Google Scholar 

  27. Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14:437–449. doi:10.1016/j.str.2005.11.014

    Article  Google Scholar 

  28. Raczyński P, Górny K, Samios J, Gburski Z (2014) Interaction between silicon–carbide nanotube and cholesterol domain. A molecular dynamics simulation study. J Phys Chem C 118:30115–30119. doi:10.1021/jp505532f

    Article  Google Scholar 

  29. Stassen H, Gburski Z (1994) Instantaneous normal-mode analysis of binary-liquid Ar–Kr mixtures. Chem Phys Lett 217:325–332. doi:10.1016/0009-2614(93)E1390-3

    Article  ADS  Google Scholar 

  30. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi:10.1006/jcph.1999.6201

    Article  ADS  MATH  Google Scholar 

  31. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  33. MacKerell BD, Bellott D, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f

    Article  Google Scholar 

  34. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J Comput Chem 31:671–690. doi:10.1002/jcc.21367

    Google Scholar 

  35. Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468. doi:10.1002/jcc.23067

    Article  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. doi:10.1063/1.445869

    Article  ADS  Google Scholar 

  37. Jena P, Rao BK, Khanna SN (2013) Physics and chemistry of small clusters. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gburski, Z., Raczyńska, V. (2016). Molecular Dynamics Simulations of N-Acetyl-p-aminophenol Molecules Embedded in High-Density Lipoprotein. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_25

Download citation

Publish with us

Policies and ethics