Skip to main content
Log in

Tautomerism of the antiepileptic drug Felbamate: A DFT study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The Felbamate is a novel anticonvulsant and neuropathic pain drug that can exist as three possible tautomers. Herein, employing density functional theory (DFT) and handling the solvent effects with the PCM model, the structural parameters, energy behavior, natural bond orbital analysis (NBO), as well as the tautomerism of Felbamate are investigated. F1 is the kinetically and thermodynamically most stable tautomer of Felbamate, which contains the amide group in each of the carbamate moieties. The calculated NMR chemical shifts and IR vibrational frequencies are in good agreement with the experimental values, confirming the suitability of the optimized geometry for Felbamate. The tautomerization reaction of F1 to each of the other tautomers occurs via an intramolecular proton transfer. This reaction affects considerably the structural parameters and atomic charges of the Felbamate molecule. A large HOMO-LUMO energy gap implies a high stability of the F1 tautomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Hansen, B. J. Samber, and D. L. Gustafson, J. Chromatogr. B, 878, 3432 (2010).

    Article  CAS  Google Scholar 

  2. E. Heyman, N. Levin, E. Lahat, O. Epstein, and R. Gandelman-Marton, Eur. J. Paediatr. Neurol., 18, 658 (2014).

    Article  Google Scholar 

  3. W. M. Brown and S. P. Aiken, Crit. Rev. Neurobiol., 12, 205 (1998).

    Article  CAS  Google Scholar 

  4. K. Palmer and D. McTavish, Drugs, 45, 1041 (1993).

    Article  CAS  Google Scholar 

  5. J. M. Pellock, E. Faught, I. E. Leppik, S. Shinnar, and M. L. Zupanc, Epilepsy Res., 71, 89 (2006).

    Article  Google Scholar 

  6. R. D. Sofia, Ann. Neurol., 36, 677 (1994).

    Article  Google Scholar 

  7. M. L. Zupanc, R. Roell Werner, M. S. Schwabe, S. E. O’Connor, C. J. Marcuccilli, K. E. Hecox, M. S. Chico, and K. A. Eggener, J. Pediatr. Neurol., 42, 396 (2010).

    Article  Google Scholar 

  8. M. J. Rho, S. D. Donevan, and M. A. Rogawski, J. Pharmacol. Exp. Ther., 280, 1383 (1997).

    CAS  Google Scholar 

  9. P. N. Patsalos, D. J. Berry, B. F. D. Bourgeois, J. C. Cloyd, T. A. Glauser, S. I. Johannessen, I. E. Leppik, T. Tomson, and E. Perucca, Epilepsia, 49, 1239 (2008).

    Article  CAS  Google Scholar 

  10. V. Galasso, Chem. Phys. Lett., 472, 237 (2009).

    Article  CAS  Google Scholar 

  11. H. Eshtiagh-Hosseini, S. A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, and M. A. Naseri, J. Mol. Struct., 1072, 187 (2014).

    Article  CAS  Google Scholar 

  12. S. A. Beyramabadi, A. Morsali, M. Javan-Khoshkholgh, and A. A. Esmaeili, J. Struct. Chem., 53, No. 3, 460–467 (2012).

    Article  CAS  Google Scholar 

  13. Z. Sadeghzade, S. A. Beyramabadi, and A. Morsali, Spectrochim. Acta, Part A, 138, 637 (2015).

    Article  CAS  Google Scholar 

  14. S. A. Beyramabadi, A. Morsali, S. H. Vahidi, M. Javan Khoshkholgh, and A. A. Esmaeili, J. Struct. Chem., 53, No. 4, 665–675 (2012).

    Article  CAS  Google Scholar 

  15. M. J. Frisch, et al., Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh PA (2003).

    Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  17. J. Tomasi and R. Cammi, J. Comput. Chem., 16, 1449 (1995).

    Article  Google Scholar 

  18. R. Ditchfield, Mol. Phys., 27, 789 (1974).

    Article  CAS  Google Scholar 

  19. D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, John Wiley & Sons, New York (2001).

    Book  Google Scholar 

  20. G. A. Zhurko and D. A. Zhurko, Chemcraft 1.7; http://www.chemcraftprog.com.

  21. J. Sanmartín, A. M. García-Deibe, M. Fondo, D. Navarro, and M. R. Bermejo, Polyhedron, 23, 963 (2004).

    Article  Google Scholar 

  22. D. C. Ware, D. S. Mackie, P. J. Brothers, and W. A. Denny, Polyhedron, 14, 1641 (1995).

    Article  CAS  Google Scholar 

  23. S. P. Sparagana, W. R. Strand, and R. C. Adams, Epilepsia, 42, 682 (2001).

    Article  CAS  Google Scholar 

  24. C. D. Thompson, M. T. Barthen, D. W. Hopper, T. A. Miller, M. Quigg, C. Hudspeth, G. Montouris, L. Marsh, J. L. Perhach, R. D. Sofia, and T. L. Macdonald, Epilepsia, 40, 769 (1999).

    Article  CAS  Google Scholar 

  25. M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, and V. S. Jayakumar, Spectrochim. Acta, Part A, 72, 654 (2009).

    Article  CAS  Google Scholar 

  26. D. W. Schwenke and D. G. Truhlar, J. Chem. Phys., 82, 2418 (1985).

    Article  CAS  Google Scholar 

  27. N. Tezer and N. Karakus, J. Mol. Model., 15, 223 (2009).

    Article  CAS  Google Scholar 

  28. N. Özdemir, M. Dinçer, A. Çukurovah, and O. Büyükgüngör, J. Mol. Model., 15, 1435 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beyramabadi.

Additional information

Original Russian Text © 2017 A. Khaleghi-Rad, S. A. Beyramabadi, A. Morsali, M. Ebrahimi, M. Khorzandi-Chenarboo.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 261–268, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi-Rad, A., Beyramabadi, S.A., Morsali, A. et al. Tautomerism of the antiepileptic drug Felbamate: A DFT study. J Struct Chem 58, 244–251 (2017). https://doi.org/10.1134/S0022476617020044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617020044

Keywords

Navigation