Skip to main content
Log in

A theoretical and optical spectroscopic study of the mechanism of a tautomeric transformation in the 7-azaindole dimer and the 7-azaindole complex with a water molecule

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electronic, vibrational, and electronic vibrational spectra of the 7-azaindole dimer, the 7-azaindole complex with a water molecule, and their tautomers are calculated. Transition states are considered based on the analysis of frequencies and shapes of low-frequency vibrations and the Mulliken charge redistribution. The performed quantum chemical calculation of chemical reactions enabled the determination of the structure of transition states and proton transfer conditions. It is shown that in the 7-AzI dimer the proton transfer has a character consistent with the formation of a zwitterionic form. The structure of excited states is calculated and the fluorescence spectra of the first electronic transitions that can be used as a criterion of the formation of 7-AzI tautomers as a result of chemical reactions proceeding through a proton transfer in the 7-azaindole dimer and the 7-azaindole complex with a water molecule, are interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, Berlin (1984).

    Book  Google Scholar 

  2. N. K. Kochetkov, E. I. Budovskii, E. D. Sverdlov, N. A. Simukova, M. F. Turchinskii, and V. N. Shibaev, Organic Chemistry of Nucleic Acids [in Russian], Khimiya, Moscow (1970).

    Google Scholar 

  3. J. Elguero, C. Marzin, A. R. Katritzky, and P. Linda, The Tautomerism of Heterocycles, Academic Press, New York (1976).

    Google Scholar 

  4. L. P. Solov’eva, Application of NAs, Their Components and Derivatives in Practice and Biological Studies [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  5. I. B. Zbarskii and S. S. Debov (eds.), Chemistry and Biochemistry of Nucleic Acids [in Russian], Meditsina, Leningrad (1968).

    Google Scholar 

  6. A. K. Chandra, M. T. Nguyen, and Th. Zeegers-Huyskens, J. Phys. Chem., 102, 6010 (1998).

    Article  CAS  Google Scholar 

  7. M. Brandl, M. Meyer, and J. Sühnel, J. Am. Chem. Soc., 121, 2605 (1999).

    Article  CAS  Google Scholar 

  8. M. J. Novak, L. Lapinski, and J. S. Kwatkowski, Chem. Phys. Lett., 157, 14 (1989).

    Article  Google Scholar 

  9. A. Aamouche, M. Ghomi, L. Grajcar, et al., J. Phys. Chem., 101A, 10063 (1997).

    Article  Google Scholar 

  10. G. N. Ten and V. I. Baranov, Zh. Prikl. Spektrosk., 71, 703 (2004).

    Google Scholar 

  11. G. N. Ten and V. I. Baranov, Opt. Spektrosk., 97, 1 (2004).

    Article  Google Scholar 

  12. T. G. Burova, V. V. Ermolenkov, G. N. Ten, D. M. Kadrov, M. N. Nurlygaianova, V. I. Baranov, and I. K. Lednev, J. Phys. Chem., 117A, 12734 (2013).

    Article  Google Scholar 

  13. M. A. Morsy, A. M. Al-Somal, and A. Suwaiyan, J. Phys. Chem., 103B, 11205 (1999).

    Article  Google Scholar 

  14. A. Suwaiyan, M. A. Morsy, and K. A. Odah, Chem. Phys. Lett., 237, 349 (1995).

    Article  CAS  Google Scholar 

  15. J. A. Kereselidze, T. Sh. Zarkua, T. J. Kikalishvili, E. J. Churguliya, and M. S. Makaridze, Usp. Khim., 71, 1120 (2002).

    Article  Google Scholar 

  16. G. N. Ten and V. I. Baranov, Biofizika, 54, 813 (2009).

    CAS  Google Scholar 

  17. K. C. Ingham and M. A. El-Bayoumi, J. Am. Chem. Soc., 96, 1674 (1974).

    Article  CAS  Google Scholar 

  18. S. K. Kim and E. R. Bernstein, J. Phys. Chem., 94, 3531 (1990).

    Article  CAS  Google Scholar 

  19. A. Nakajima, F. Ono, Y. Kihara, A. Ogawa, K. Matsubara, K. Ishikawa, M. Baba, and K. Kaya, Laser Chem., 15, 167 (1995).

    Article  CAS  Google Scholar 

  20. C. Carmona, E. Carcía-Fernández, J. Hidalgo, A. Sánchez-Coronilla, and M. Balón, J. Fluoresc., 24, 45 (2014).

    Article  CAS  Google Scholar 

  21. I. Alkorta and J. Elguero, Struct. Chem., 25, 683 (2014).

    Article  CAS  Google Scholar 

  22. K. Fuke and K. Kaya, J. Phys. Chem., 93, 614 (1989).

    Article  CAS  Google Scholar 

  23. L. Serrano-Andrés and M. Merchán, Chem. Phys. Lett., 418, 569 (2006).

    Article  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Gaussian Inc., Wallingford CT (2009).

    Google Scholar 

  25. B. I. Stepanov, Vestn. Akad. Nauk BSSR, No. 3, 67 (1972).

    Google Scholar 

  26. L. A. Gribov and V. I. Baranov, Theory and Calculation Methods for Molecular Processes. Spectra, Chemical Transformations, and Molecular Logic [in Russian], KomKniga, Moscow (2006).

    Google Scholar 

  27. J. Ladik, Quantenbiochemie für Chemiker und Biologen (Quantum Biochemistry for Chemists and Biologists), Ferdinand Enke, Stuttgart (1972).

    Google Scholar 

  28. H. Morita and S. Nagakura, J. Mol. Spectrosc., 42, 536 (1972).

    Article  CAS  Google Scholar 

  29. J. M. Clemens, R. M. Hochstrasser, and H. P. Trommosdorff, J. Chem. Phys., 89, 177 (1984).

    Google Scholar 

  30. F. Graf, R. Meyer, T.-K. Ha, and R. R. Ernst, J Chem. Phys., 75, 2914 (1981).

    Article  CAS  Google Scholar 

  31. G. Biczó, J. Ladik, and J. Gergely, Acta Phys. Acad. Sci. Hung., 20, 11 (1966).

    Article  Google Scholar 

  32. G. N. Ten, D. M. Kadrov, and V. I. Baranov, Biofizika, 59, No. 4, 656 (2014).

    CAS  Google Scholar 

  33. F. Santoro, M. Improta, A. Lami, J. Bloino, and V. Barone, J. Chem. Phys., 126, 084509 (2007).

    Article  Google Scholar 

  34. F. Santoro, A. Lami, M. Improta, and V. Barone, J. Chem. Phys., 126, 184102 (2007).

    Article  Google Scholar 

  35. F. Santoro, M. Improta, A. Lami, J. Bloino, and V. Barone, J. Chem. Phys., 128, 224311 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ten.

Additional information

Original Russian Text © 2017 G. N. Ten, O. E. Glukhova, M. M. Slepchenkov, N. E. Shcherbakova, V. I. Baranov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 242–252, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ten, G.N., Glukhova, O.E., Slepchenkov, M.M. et al. A theoretical and optical spectroscopic study of the mechanism of a tautomeric transformation in the 7-azaindole dimer and the 7-azaindole complex with a water molecule. J Struct Chem 58, 226–235 (2017). https://doi.org/10.1134/S0022476617020020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617020020

Keywords

Navigation