Skip to main content
Log in

Analysis of spin-polarized solutions in the basis set of paired orbitals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This work is a brief review of the authors’ applications of Löwdin–Amos–Hall paired orbitals for the analysis of spin-polarized DFT solutions. The possibilities of this approach are demonstrated on the example (1) of models of Fe(III) hydroxocomplexes with two forms of the terminal oxo center, which are involved in the detachment of methane hydrogen, and (2) models of vanadium oxide experiencing the dissociation of the vanadyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Löwdin, Phys. Rev., 97, No. 6, 1509–1520 (1955).

    Article  Google Scholar 

  2. A. T. Amos and G. G. Hall, Proc. R. Soc. A, 263, No. 1315, 483–493 (1961).

    Article  Google Scholar 

  3. H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr, J. Chem. Phys., 47, No. 6, 1936–1940 (1967).

    Article  CAS  Google Scholar 

  4. R. Martin and E. Davidson, Phys. Rev. A, 16, No. 4, 1341–1346 (1977).

    Article  CAS  Google Scholar 

  5. R. L. Martin, J. Chem. Phys., 118, No. 11, 4775–4777 (2003).

    Article  CAS  Google Scholar 

  6. D. M. Chipman, Theor. Chim. Acta, 82, Nos. 1/2, 93–115 (1992).

    Article  CAS  Google Scholar 

  7. I. Zilberberg, S. Ph. Ruzankin, S. Malykhin, and G. M. Zhidomirov, Chem. Phys. Lett., 394, Nos. 4-6, 392–396 (2004).

    Article  CAS  Google Scholar 

  8. EMR of Paramagnetic Molecules, L. J. Berliner and J. Reuben (eds.), vol. 13, Springer, Boston, MA, USA (1993).

  9. V. G. Tsirelson and R. P. Ozerov, Electron Density and Bonding in Crystals: Principles, Theory and X-ray Diffraction Experiments in Solid State Physics and Chemistry, Institute of Physics Publishing (1996).

    Google Scholar 

  10. H. M. McConnell, J. Chem. Phys., 28, No. 6, 1188–1192 (1958).

    Article  CAS  Google Scholar 

  11. H. M. McConnell and D. B. Chesnut, J. Chem. Phys., 28, No. 1, 107–117 (1958).

    Article  CAS  Google Scholar 

  12. J. Cano, E. Ruiz, S. Alvarez, and M. Verdaguer, Comm. Inorg. Chem., 20, No. 1, 27–56 (1998).

    Article  CAS  Google Scholar 

  13. T. Yonezawa, J. Chem. Phys., 51, No. 2, 669 (1969).

    Article  CAS  Google Scholar 

  14. T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Bull. Chem. Soc. Jpn., 42, No. 9, 2437–2449 (1969).

    Article  CAS  Google Scholar 

  15. T. Amos and L. C. Snyder, J. Chem. Phys., 41, No. 6, 1773 (1964).

    Article  CAS  Google Scholar 

  16. J. E. Harriman, J. Chem. Phys., 40, No. 10, 2827 (1964).

    Article  CAS  Google Scholar 

  17. D. M. Chipman, I. Carmicheal, and D. Feller, J. Phys. Chem., 95, No. 12, 4702–4708 (1991).

    Article  CAS  Google Scholar 

  18. D. M. Chipman, J. Chem. Phys., 94, No. 10, 6632–6637 (1991).

    Article  CAS  Google Scholar 

  19. J. M. Wittbrodt and H. B. Schlegel, J. Chem. Phys., 105, No. 15, 6574 (1996).

    Article  CAS  Google Scholar 

  20. S. Ph. Ruzankin, I. Lyskov, and I. L. Zilberberg, Int. J. Quantum Chem., 112, No. 18, 3052–3058 (2012).

    Article  Google Scholar 

  21. S. Ph. Ruzankin, U2R program.

  22. I. Mayer, Simple Theorems, Proofs, and Derivations in Quantum Chemistry, Kluwer/Plenum, New York (2003).

    Book  Google Scholar 

  23. G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems (Automatic Computation), Prentice-Hall, Englewood Cliffs, N. J. (1967).

    Google Scholar 

  24. I. Zilberberg and S. Ruzankin, J. Comput. Chem., 31, No. 1, 84–89 (2010).

    Article  CAS  Google Scholar 

  25. I. Zilberberg and S. Ruzankin, Phys. Rev. A, 82, No. 4, 42505 (2010).

    Article  Google Scholar 

  26. P. Karadakov, Int. J. Quantum Chem., 27, No. 6, 699–707 (1985).

    Article  CAS  Google Scholar 

  27. I. Zilberberg and S. Ruzankin, Chem. Phys. Lett., 394, Nos. 1-3, 165–170 (2004).

    Article  CAS  Google Scholar 

  28. R. McWeeny, Rev. Mod. Phys., 32, No. 2, 335–369 (1960).

    Article  Google Scholar 

  29. J. Wang, A. D. Becke, and V. H. Smith, J. Chem. Phys., 102, No. 8, 3477–3480 (1995).

    Article  CAS  Google Scholar 

  30. A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys., 126, No. 21, 214104 (2007).

    Article  Google Scholar 

  31. A. E. Clark and E. R. Davidson, J. Chem. Phys., 115, No. 16, 7382–7392 (2001).

    Article  CAS  Google Scholar 

  32. R. S. Mulliken, J. Chem. Phys., 23, No. 10, 1833 (1955).

    Article  CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT, USA (2009).

    Google Scholar 

  34. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem., 22, No. 9, 931–967 (2001).

    Article  CAS  Google Scholar 

  35. C. Fonseca Guerra, J. G. Snijders, G. Te Velde, and E. J. Baerends, Theor. Chem. Acc., 99, No. 6, 391–403 (1998).

    Google Scholar 

  36. E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. F. Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, and A. L. Yakovlev, ADF2014, SCM, Theoretical Chemistry, Amsterdam, Netherlands (2014).

  37. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, Comput. Phys. Commun., 181, No. 9, 1477–1489 (2010).

  38. A. D. Becke, Phys. Rev. A, 38, No. 6, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  39. A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).

    Article  CAS  Google Scholar 

  40. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, No. 2, 785–789 (1988).

    Article  CAS  Google Scholar 

  41. R. Ditchfield, W. J. Hehre, and J. Pople, J. Chem. Phys., 54, No. 2, 724 (1971).

    Article  CAS  Google Scholar 

  42. R. C. Binning and L. A. Curtiss, J. Comput. Chem., 11, No. 10, 1206–1216 (1990).

    Article  CAS  Google Scholar 

  43. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, No. 10, 5639 (1980).

    Article  CAS  Google Scholar 

  44. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys., 80, No. 7, 3265 (1984).

    Article  CAS  Google Scholar 

  45. G. A. Zhurko, ChemCraft program; http://chemcraftprog.com.

  46. A. A. Shubin, S. Ph. Ruzankin, I. L. Zilberberg, O. P. Taran, and V. N. Parmon, Chem. Phys. Lett., 619, 126–132 (2015).

    Article  CAS  Google Scholar 

  47. V. I. Avdeev and V. A. Tapilin, J. Phys. Chem. C, 113, No. 33, 14941–14945 (2009).

    Article  CAS  Google Scholar 

  48. A. A. Viggiano, R. A. Morris, T. M. Miller, J. F. Friedman, M. Menedez-Barreto, J. F. Paulson, H. H. Michels, R. H. Hobbs, and J. A. Montgomery, J. Chem. Phys., 106, No. 20, 8455 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Zil’berberg.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 5, pp. 1047-1065, June-July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzankin, S.P., Shubin, A.A., Koval’skii, V.Y. et al. Analysis of spin-polarized solutions in the basis set of paired orbitals. J Struct Chem 57, 997–1014 (2016). https://doi.org/10.1134/S0022476616050218

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616050218

Keywords

Navigation