Skip to main content
Log in

Spin-crossover in coordination compounds of iron(II) with tris(pyrazol-1-yl)methane and cluster anions

  • Structure and Properties of Coordination Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Synthesis procedures for new coordination compounds of iron(II) with tris(pyrazol-1-yl)methane (HC(pz)3), containing cluster anions in the outer sphere, of the composition [Fe{HC(pz)3}2][Mo6Cl14]•2H2O (I), [Fe{HC(pz)3}2][Mo6Br14]•H2O (II), and [Fe{HC(pz)3}2]2[Re6S8(CN)6]•2H2O (III) are developed. The compounds are studied by static magnetic susceptibility, electronic, IR, and Mössbauer spectroscopic methods. The magnetochemical study shows that in the polycrystalline phases of all compounds the spincrossover 1 А 15 Т 2 is observed which is accompanied by thermochromism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gütlich and H. Goodwin, Top Curr. Chem., 233, 1–47 (2004).

    Article  Google Scholar 

  2. M. A. Halcrow, Spin-Crossover Materials Properties and Applications, J. Wiley & Sons, U. K. (2013).

    Book  Google Scholar 

  3. A. Boussecsou, G. Molnár, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev., 40, 3313–3335 (2011).

    Article  Google Scholar 

  4. G. Aromi, L. A. Barrios, O. Roubeau, and P. Gamez, Coord. Chem. Rev., 255, 485–546 (2011).

    Article  CAS  Google Scholar 

  5. L. G. Lavrenova and O. G. Shakirova, Eur. J. Inorg. Chem., 670–682 (2013).

    Google Scholar 

  6. O. Kahn, J. Kröber, and C. Jay, Adv. Mater., 4, 718–728 (1992).

    Article  CAS  Google Scholar 

  7. P. Gamez, J. S. Costa, M. Quesada, and G. Aromí, J. Chem. Soc. Dalton Trans., No. 38, 7845–7853 (2009).

    Article  Google Scholar 

  8. A. Bousseksou, C. Vieu, J.-F. Letard, P. Demont, J.-P. Tuchagues, L. Malaquin, J. Menegotto, and L. Salmon, Patent EU1430552 (2004).

    Google Scholar 

  9. K. Torin, F. Takehiko, and A. Takuzo, Patent JP2005187413 (2005).

    Google Scholar 

  10. J. S. Hoon and J. J. Il, Patent KR20070081923 (2007).

    Google Scholar 

  11. J.-F. Letard, N. Daro, C. Aymonier, F. Cansell, and S. Saint-Martin, Patent EP2391631 (2011).

    Google Scholar 

  12. R. N. Muller, V. Elst, and S. Laurent, J. Am. Chem. Soc., 125, 8405–8407 (2003).

    Article  CAS  Google Scholar 

  13. J.-F. Letard, O. Nguyen, and N. Daro, Patent FR2894581 (2007).

    Google Scholar 

  14. D. L. Reger, D. A. Little, A. L. Rheingold, M. Lam, L. M. Liable-Sands, B. Rhagitan, T. Concolino, A. Mohan, G. J. Long, and V. Briois, Inorg. Chem., 40, 1508–1520 (2001).

    Article  CAS  Google Scholar 

  15. H. Paulsen, L. Duelund, A. Zimmermann, F. Averseng, M. Gerdan, H. Winkler, H. Toftlund, and A. X. Trautwein, Monatsh. Chem., 134, 295–306 (2003).

    Article  CAS  Google Scholar 

  16. O. G. Shakirova, L. G. Lavrenova, N. V. Kuratieva, D. Yu. Naumov, V. A. Daletskii, L. A. Sheludyakova, V. A. Logvinenko, and S. F. Vasilevskii, Koord. Khim., 36, 275–283 (2010).

    Article  CAS  Google Scholar 

  17. O. G. Shakirova, L. G. Lavrenova, V. A. Daletsky, E. A. Shusharina, T. P. Griaznova, S. A. Katsyuba, V. V. Syakaev, V. V. Skripacheva, A. R. Mustafina, and S. E. Soloveva, Inorg. Chim. Acta, 363, 4059–4064 (2010).

    Article  CAS  Google Scholar 

  18. O. G. Shakirova, V. A. Daletskii, L. G. Lavrenova, S. V. Trubina, S. B. Erenburg, K. Yu. Zhizhin, and N. T. Kuznetsov, Zh. Neorg. Khim., 58, No. 6, 739–745 (2013).

    Google Scholar 

  19. O. G. Shakirova, L. G. Lavrenova, A. S. Bogomyakov, K. Yu. Zhizhin, and N. T. Kuznetsov, Zh. Neorg. Khim., 60, No. 7, 786–789 (2015).

    CAS  Google Scholar 

  20. O. G. Shakirova, V. A. Daletskii, L. G. Lavrenova, V. A. Varnek, D. A. Rudakov, and V. I. Potkin, Zh. Neorg. Khim., 55, No. 1, 50–57 (2014).

    Google Scholar 

  21. W. Preetz and K. Harder, J. Alloys Compd., 183, 413–429 (1992).

    Article  CAS  Google Scholar 

  22. K. Kirakci, S. Cordier, and C. Perrin, Z. Anorg. Allg. Chem., 631, 411–416 (2005).

    Article  CAS  Google Scholar 

  23. N. G. Naumov, A. V. Virovets, Y. I. Mironov, S. B. Artemkina, and V. E. Fedorov, Ukr. Khim. Zh., 65, 21–27 (1999).

    CAS  Google Scholar 

  24. A. Hauser, Top Curr. Chem., 233, 49–58 (2004).

    Article  CAS  Google Scholar 

  25. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York (1986).

    Google Scholar 

  26. S. Sugano, Y. Tanabe, and H. Kamimura, Pure and Applied Physics, vol. 33: Multiplets of Transition-Metal Ions in Crystals, Academic Press, N. Y., London (1970).

    Google Scholar 

  27. B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Application, Wiley-VCH, N. Y. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Shakirova.

Additional information

Original Russian Text © 2015 O. G. Shakirova, L. G. Lavrenova, E. V. Korotaev, L. A. Sheludyakova, V. A. Varnek, M. A. Shestopalov, Yu. V. Mironov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 8, pp. 1581-1587, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirova, O.G., Lavrenova, L.G., Korotaev, E.V. et al. Spin-crossover in coordination compounds of iron(II) with tris(pyrazol-1-yl)methane and cluster anions. J Struct Chem 56, 1520–1526 (2015). https://doi.org/10.1134/S0022476615080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615080090

Keywords

Navigation