Skip to main content
Log in

Comparative study of the lanthanide (Ln) and actinide (An) triflate complexes M(OTf) n

  • Structure and Properties of Coordination Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical studies on the lanthanide and actinide triflate complexes M(OTf) n where M = La, Ce, Gd, Yb, Lu, Th, U, Np, Pu, Am, Cm, Bk, and No; n = 3 and 4, are carried out using functional density theory (DFT). The study of An(OTf)3 complexes showed that the three OTf groups are bidentate, generating a trigonal prism (TP). Two limiting structures of TP are observed; the most distorted is the thorium triflate Th(OTf)3 and the ideal one is U(OTf)3. The highest population contribution of 5d orbital compared to 5f orbital in Th–O bond of Th(OTf)3 explains the distortion. The intramolecular rearrangement of the OTf ligands in Ln(OTf)3 generates two conformers. In Yb(OTf)3, the pseudo-eclipsed and the staggered conformations are stable and can be isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Piguet and J. C. G. Bünzli, Chem. Soc. Rev., 28, 347–358 (1999).

    Article  CAS  Google Scholar 

  2. K. A. Gschneidner, L. Eyring, G. R. Chopin, and G. H. Lander (eds.), Handbook on the Physics and Chemistry of Rare Earths. Lanthanides/Actinides: Chemistry, Elsevier Science (1994), p. 18.

    Google Scholar 

  3. a) S. Kobayashi, Synlett, 689 (1994)

    Google Scholar 

  4. F. T. Edelmann, New J. Chem., 19, 535 (1995)

    CAS  Google Scholar 

  5. H. Schumann, J. A. Meese-Marktscheffel, A. Dietrich, and F. H. Görlitz, J. Organomet. Chem., 299, 430 (1992).

    Google Scholar 

  6. G. A. Lawrance, Chem. Rev., 17, 86 (1986).

    Google Scholar 

  7. Actinides and Fission Products Partitioning and Transmutation, Status and Assessment Report, Proc. 5th Int. Information Exchange Meeting, Mol, Belgium, 1998, NEA/OECD, Paris (1999), pp. 25–27.

  8. a) K. L. Nash, Solvent Extr. Ion Exch., 11, 729 (1993)

    Article  CAS  Google Scholar 

  9. K. A. Gschneidner, L. Eyring, G. R. Chopin, and G. H. Lander (eds.), Handbook on the Physics and Chemistry of Rare Earths. Lanthanides/Actinides: Chemistry, Elsevier Science, Amsterdam, (1994), p. 197.

    Google Scholar 

  10. G. Nocton, F. Burdet, J. Pécaut, and M. Mazzanti, Angew. Chem., Int. Ed., 46, 7574–7578 (2007).

    Article  CAS  Google Scholar 

  11. a) J. H. Matonic, B. L. Scott, and M. P. Neu, Inorg. Chem., 40, 2638/2639 (2001)

    Article  Google Scholar 

  12. P. Lindqvist-Reis, C. Apostolidis, J. Rebizant, A. Morgenstern, R. Klenze, O. Walter, T. Fanghänel, and R. G. Haire, Angew. Chem. Int. Ed., 46, 919–922 (2007)

    Article  CAS  Google Scholar 

  13. S. Skanthakumar, M. R. Antonio, R. E. Wilson, and L. Soderholm, Inorg. Chem., 46, 3485–3491 (2007).

    Article  CAS  Google Scholar 

  14. S. A. Cotton, in: Lanthanide and Actinide Chemistry–Inorganic Chemistry, John Wiley & Sons (2006), p. 193.

    Book  Google Scholar 

  15. K. Lyczko et al., Inorg. Chem. Commun., 24, 234–236 (2012).

    Article  CAS  Google Scholar 

  16. J. C. Berthet, M. Lance, M. Nierlich, and M. Ephritikhine, J. Inorg. Chem., 2005–2007 (1999).

    Google Scholar 

  17. E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys., 2, 41 (1973).

    Article  CAS  Google Scholar 

  18. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B, 46, 6671 (1992).

    Article  CAS  Google Scholar 

  19. E. Van Lenthe, A. Ehlers, and E. J. Baerends, J. Chem. Phys., 110, 8943 (1999).

    Article  Google Scholar 

  20. D. Hannachi, N. Ouddai, and H. Chermette, Dalton Trans., 39, 3673–3680 (2010).

    Article  CAS  Google Scholar 

  21. G. A. Shamov, Inorg. Chem., 51, 6507–6516 (2012)

    Article  CAS  Google Scholar 

  22. K. I. M. Ingram, M. J. Tassell, A. J. Gaunt, and N. Kaltsoyannis, Inorg. Chem., 47, 7824–7833 (2008).

    Article  CAS  Google Scholar 

  23. A. J. Gaunt, S. D. Reilly, A. E. Enriquez, B. L. Scott, J. A. Ibers, P. Sekar, K. I. M. Ingram, N. Kaltsoyannis, and M. P. Neu, Inorg. Chem., 47, No. 1, 29–41 (2008).

    Article  CAS  Google Scholar 

  24. C. R. Graves, E. J. Schelter, T. Cantat, B. L. Scott, and J. L. Kiplinger, Organometallics, 27, 5371–5378 (2008).

    Article  CAS  Google Scholar 

  25. J. C. Berthet, M. Nierlich, and M. Ephritikhine, Angew. Chem., Int. Ed., 42, 1952–1954 (2003).

    Article  CAS  Google Scholar 

  26. J. C. Berthet, M. Lance, M. Nierlich, and M. Ephritikhine, J. Chem. Soc., Chem. Commun., 1373 (1998).

    Google Scholar 

  27. A. L. Allred and E. G. Rochow, J. Org. Chem., 5, 264 (1949).

    Google Scholar 

  28. S. Lakehal, N. Ouddai, D. Hannachi, and M. Bououdina, Int. J. Quantum Chem., 24339 (2012).

    Google Scholar 

  29. R. G. Pearson, Coord. Chem. Rev., 100, 403 (1990).

    Article  CAS  Google Scholar 

  30. P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev., 103, 1793 (2003).

    Article  CAS  Google Scholar 

  31. P. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983).

    Article  CAS  Google Scholar 

  32. R. G. Parr, L. Szentpaly, and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).

    Article  CAS  Google Scholar 

  33. T. Koopmans, Physica, 1, 104 (1933).

    Article  CAS  Google Scholar 

  34. S. Liu, J. Chem. Sci., 117, 477 (2005).

    Article  CAS  Google Scholar 

  35. K. Lyczko et al., Inorg. Chem. Commun., 24, 234–236 (2012).

    Article  CAS  Google Scholar 

  36. A. Khalafi-Nezhad and R. F. Alamdari, Tetrahedron, 57, 6805–6807 (2001).

    Article  CAS  Google Scholar 

  37. A. M. Mendoza-Wilson, G. D. Ávila-Quezada, R. R. Balandrán-Quintana, D. Glossman-Mitnik, and S. Ruiz-Cruz, J. Mol. Struct.: THEOCHEM, 897, 6–11 (2009).

    Article  CAS  Google Scholar 

  38. D. Marabello, R. Bianchi, G. Gervasio, and F. Cargnoni, Acta Crystallogr., 60, 494 (2004).

    Article  CAS  Google Scholar 

  39. R. F. W. Bader and H. J. Essen, J. Chem. Phys., 80, 1943–1960 (1984).

    Article  CAS  Google Scholar 

  40. A. Espinosa, L. Alkorta, J. Elguero, and E. Molins, J. Chem. Phys., 117, 5529 (2002).

    Article  CAS  Google Scholar 

  41. A. N. Egorova and V. G. Tsirelson, Russ. J. Inorg. Chem., 51, 941 (2006).

    Article  Google Scholar 

  42. B. Carles, M. Costas, J. M. Poblet, and M. Rohmer, et al., Inorg. Chem., 35, 298 (1996).

    Google Scholar 

  43. M. Lein, A. Szabo, A. Kovacs, and G. Frenking, Faraday Discuss., 124, 365–378 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ouddai.

Additional information

Original Russian Text © 2015 M. Lemmouchi, D. Hannachi, N. Ouddai.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 8, pp. 1557-1565, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmouchi, M., Hannachi, D. & Ouddai, N. Comparative study of the lanthanide (Ln) and actinide (An) triflate complexes M(OTf) n . J Struct Chem 56, 1495–1504 (2015). https://doi.org/10.1134/S0022476615080065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615080065

Keywords

Navigation