Skip to main content
Log in

Theoretical study of solvent and substituent effects on the structure, 14N NQR and electronic spectra of [Cr(CO)5py]

  • Structure and Properties of Coordination Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure, 14N NQR parameters, electronic spectra, and hyperplarizability of [Cr(CO)5py] in seven different solvents were theoretically computed with MPW1PW91 method based on Polarizable Continuum Model (PCM). The substituent effects in para- substituted Cr(CO)5–pyridine complexes have been evaluated. The results indicate that both polarity of solvents and the substituents have played a significant role on the structures and properties of complexes. The study also shows that the structural and solvent modification change the NLO properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Dennenberg and D. J. Darensbourg, Inorg. Chem., 11, 72 (1972).

    Article  CAS  Google Scholar 

  2. M. A. Weiner, A. Gin, and M. Lattman, Inorg. Chim. Acta, 24, 235 (1977).

    Article  CAS  Google Scholar 

  3. R. M. Kolodziej and A. J. Lees, Organometallics, 5, 450 (1986).

    Article  CAS  Google Scholar 

  4. B. S. Creaven, R. A. Howie, and C. Long, Acta Crystallogr., Sect. C, 57, 385 (2001).

    Article  CAS  Google Scholar 

  5. G. S. Boxhoorn, D. J. Stufkens, P. J. M. Van der Coolwijk, and A. M. F. Hezemans, Inorg. Chem., 20, 2778 (1981).

    Article  CAS  Google Scholar 

  6. B. S. Creaven, R. A. Howie, and C. Long, Acta Crystallogr., Sect. C, 56, 181 (2000).

    Google Scholar 

  7. E. I. Solomon, P. M. Jones, and J. A. May, Chem. Rev., 93, 2623 (1993).

    Article  CAS  Google Scholar 

  8. M. Wrighton, Chem. Rev., 74, 401 (1974).

    Article  CAS  Google Scholar 

  9. M. Bruschi, P. Fantucci, and M. Pizzotti, J. Phys. Chem. A, 109, 9637 (2005).

    Article  CAS  Google Scholar 

  10. M. Palusiak, J. Organomet. Chem., 692, 3866–3873 (2007).

    Article  CAS  Google Scholar 

  11. A. W. Ehlers, S. Dapprich, S. F. Vyboishchikov, and G. Frenking, Organometallics, 15, 105 (1996).

    Article  CAS  Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, in: Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  13. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  14. A. J. H. Wachters, J. Chem. Phys., 52, 1033 (1970).

    Article  CAS  Google Scholar 

  15. P. J. Hay, J. Chem. Phys., 66, 4377–4384 (1977).

    Article  CAS  Google Scholar 

  16. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, 5639–5648 (1980).

    Article  CAS  Google Scholar 

  17. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299–310 (1985).

    Article  CAS  Google Scholar 

  18. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 284–298 (1985).

    Article  Google Scholar 

  19. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 97, 2571–2577 (1992).

    Article  CAS  Google Scholar 

  20. B. Adamo and V. Barone, J. Chem. Phys., 108, 664 (1998).

    Article  CAS  Google Scholar 

  21. J. P. C. A. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A, 105, 4851 (2001).

    Article  CAS  Google Scholar 

  22. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A, 105, 6655–6667 (2001).

    Article  CAS  Google Scholar 

  23. Y. Zhang, Z. Guo, and X.-Z. You, J. Am. Chem. Soc., 123, 9378–9387 (2001).

    Article  CAS  Google Scholar 

  24. R. C. Dunbar, J. Phys. Chem. A, 106, 7328–7337 (2002).

    Article  CAS  Google Scholar 

  25. E. Runge and E. K. U. Gross, Phys. Rev. Lett., 52, 997–1000 (1984).

    Article  CAS  Google Scholar 

  26. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999–3093 (2005).

    Article  CAS  Google Scholar 

  27. J. D. Graybeal, Molecular Spectroscopy, McGraw-Hill (1988).

    Google Scholar 

  28. J. Seliger, Nuclear Quadrupole Resonance, Theory–Encyclopedia of Spectroscopy and Spectrometry, Academic Press (2000).

    Google Scholar 

  29. C. P. Slichter, Principles of Magnetic Resonance, 3rd ed., Springer-Verlag, Heidelberg (1990).

    Book  Google Scholar 

  30. M. Tokman, D. Sundholm, P. Pyykkö, and J. Olsen, Chem. Phys. Lett., 265, 60 (1997).

    Article  CAS  Google Scholar 

  31. D. A. Keleiman, Phys. Rev., 126, 1977 (1962).

    Article  Google Scholar 

  32. P. J. Mendes, T. J. L. Silva, A. J. P. Carvalho, and J. P. P. Ramalho, J. Mol. Struct.: THEOCHEM, 946, 33–42 (2010).

    Article  CAS  Google Scholar 

  33. L. M. Chen, J. C. Chen, H. Luo, et al., J. Theor. Comput. Chem., 10, 581–604 (2011).

    Article  CAS  Google Scholar 

  34. X. Cao, C. Liu, and Y. Liu, J. Theor. Comput. Chem., 11, 573–586 (2012).

    Article  CAS  Google Scholar 

  35. L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).

    Article  CAS  Google Scholar 

  36. K. Clays and A. Persoons, Phys. Rev. Lett., 66, 2980 (1991).

    Article  CAS  Google Scholar 

  37. H. Lee, S.-Y. An, and M. Cho, J. Phys. Chem. B, 103, 4992 (1999).

    Article  CAS  Google Scholar 

  38. P. C. Ray and J. Leszczynski, Chem. Phys. Lett., 399, 162 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Additional information

Original Russian Text © 2015 M. Z. Fashami, R. Ghiasi, Hoda Pasdar.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 8, pp. 1537-1544, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashami, M.Z., Ghiasi, R. & Pasdar, H. Theoretical study of solvent and substituent effects on the structure, 14N NQR and electronic spectra of [Cr(CO)5py]. J Struct Chem 56, 1474–1482 (2015). https://doi.org/10.1134/S0022476615080041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615080041

Keywords

Navigation