Skip to main content
Log in

Theoretical Study of Substituent Effect on the pKa Values of Cr(CO)3(para-XC6H4COOH) Complexes

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this investigation substituent effect on the pKa values of the Cr(CO)3(para-XC6H4COOH) complexes (X = NH2, OH, H, F, Cl, CN, NO2) was demonstrated at the wB97XD/6-311G(d,p) level of theory through aqueous phase calculation. The conductor-like polarized continuum model (CPCM) was used for calculation in solution phase. The CPCM calculations were accompanied with SMD-Coulomb atomic radii. The linear correlation relationships that can be established between the calculated pKa values with Hammett constants and deprotonating energy were analyzed. Also, the atomic charges of the acidic proton were calculated through QTAIM and NBO methods and their correlations with the obtained pKa values were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. O. Fischer, K. Ofele, H. Essler, W. Frohlich, J. P. Mortensen, and W. Semmlinger, Z. Naturforsch. B 13, 458 (1958).

    Article  Google Scholar 

  2. M. HudeZek and S. Toma, J. Organomet. Chem. 406, 147 (1991).

  3. C. A. L. Mahaffy and J. Hamilton, Synth. Reactiv. Inorg. Met.-Org. Chem. 17, 849 (1987).

    CAS  Google Scholar 

  4. C. A. L. Mahaffy and J. Hamilton, Synth. Reactiv. Inorg. Met.-Org. Chem. 17, 43 (1987).

    CAS  Google Scholar 

  5. E. O. Fischer, K. Ofele, H. Essler, W. Frolich, J. P. Mortensrsen, and W. Semmlinger, Cherm. Ber. 91, 2763 (1958).

    Article  CAS  Google Scholar 

  6. M. Ashraf and W. R. Jackson, J. Chem. Soc. Perkin II 11, 103 (1972).

    Article  Google Scholar 

  7. M. K. Shamami, R. Ghiasi, and M. D. Asli, J. Chin. Chem. Soc. 64, 369 (2017).

    Article  CAS  Google Scholar 

  8. H. Ghobadi, R. Ghiasi, and S. Jamehbozorgi, J. Chin. Chem. Soc. 64, 522 (2017).

    Article  CAS  Google Scholar 

  9. R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).

    Article  CAS  Google Scholar 

  10. R. Ghiasi and A. Heydarbeighi, Russ. J. Inorg. Chem. 61, 985 (2016).

    Article  CAS  Google Scholar 

  11. R. Ghiasi, H. Pasdar, and F. Irajizadeh, J. Chil. Chem. Soc 60, 2740 (2015).

    Article  CAS  Google Scholar 

  12. A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).

    Article  CAS  Google Scholar 

  13. R. Ghiasi and E. Amini, J. Struct. Chem. 56, 1483 (2015).

    Article  CAS  Google Scholar 

  14. M. Z. Fashami and R. Ghiasi, J. Struct. Chem. 56, 1474 (2015).

    Article  CAS  Google Scholar 

  15. R. Ghiasi and H. Pasdar, Russ. J. Phys. Chem. A 87, 973 (2013).

    Article  CAS  Google Scholar 

  16. R. Ghiasi and A. Boshak, J. Mex. Chem. Soc. 57, 8 (2013).

    CAS  Google Scholar 

  17. H. Pasdar and R. Ghiasi, Main Group Chem. 8, 143 (2009).

    Article  CAS  Google Scholar 

  18. C. Hansch, A. Leo, and R. W. Taft, Chem. Rev. 97, 165 (1991).

    Article  Google Scholar 

  19. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).

    Article  CAS  Google Scholar 

  20. S. Kheirjou, A. Abedin, A. Fattahi, and M. M. Hashemi, Comput. Theor. Chem. 1027, 191 (2014).

    Article  CAS  Google Scholar 

  21. U. A. Chaudry and P. L. A. Popelier, J. Org. Chem. 69, 233 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. J. Zhang, Y. Sun, C. Mao, H. Gao, W. Zhou, and Z. Zhou, J. Mol. Struct.: THEOCHEM 906, 46 (2009).

    Article  CAS  Google Scholar 

  23. K. C. Gross and P. G. Seybold, Int. J. Quantum Chem. 80, 1107 (2000).

    Article  CAS  Google Scholar 

  24. G.-C. Bahram and A. Ghiami-Shomami, Comput. Theor. Chem. 1054, 71 (2015).

    Article  CAS  Google Scholar 

  25. M. Remko, J. Bojarska, A. Remková, and W. Maniukiewicz, Comput. Theor. Chem. 1062, 50 (2015).

    Article  CAS  Google Scholar 

  26. D. D. Perrin, B. Dempsey, and E. P. Serjeant, pK a Prediction for Organic Acids and Bases (Chapman and Hall, Cambridge, 1981).

  27. L. P. Hammett, Physical Organic Chemistry, 2nd ed. (McGraw-Hill, New York, 1970).

    Google Scholar 

  28. C. A. Hollingsworth, P. G. Seybold, and C. M. Hadad, Int. J. Quantum Chem. 90, 1396 (2002).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  30. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  31. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  32. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  33. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  CAS  Google Scholar 

  34. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  Google Scholar 

  35. M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comp. Chem. 24, 669 (2003).

    Article  CAS  Google Scholar 

  36. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. T. A. Keith, TK Gristmill Software (Overland Park KS, USA, 2013). http://aim.tkgristmill.com.

  38. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  39. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Gaussian Inc., PA, USA, 1998).

    Google Scholar 

  40. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

    Article  CAS  Google Scholar 

  41. A. Ben-Naim, Solvation Thermodynamics (Plenum, New York, 1987).

    Book  Google Scholar 

  42. R. Gomez-Bombarelli, M. Gonzalez-Perez, M. T. Perez-Prior, E. Calle, and J. Casado, J. Org. Chem. 74, 4943 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. J. Ho and M. L. Coote, Theor. Chem. Acc. 125, 3 (2010).

    Article  CAS  Google Scholar 

  44. R. Pliego, Chem. Phys. Lett. 367, 145 (2003).

    Article  CAS  Google Scholar 

  45. K. Murlowska and N. Sadlej-Sosnowska, J. Phys. Chem. A 109, 5590 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. I. E. Charif, S. M. Mekelleche, D. Villemin, and N. Mora-Diez, J. Mol. Struct.: THEOCHEM 818, 1 (2007).

    Article  CAS  Google Scholar 

  47. M. D. Liptak and G. C. Shields, J. Am. Chem. Soc. 123, 7314 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. D. P. Dissanayake and R. Senthilnithy, J. Mol. Struct.: THEOCHEM 910, 93 (2009).

    Article  CAS  Google Scholar 

  49. B. Nicholls and M. C. Whitin, J. Chem. Soc., 551 (1959).

  50. C. A. Hollingsworth, P. G. Seybold, and C. M. Hadad, Int. J. Quantum Chem. 90, 1396 (2002).

    Article  CAS  Google Scholar 

  51. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza Ghiasi, Zamani, A. & Shamami, M.K. Theoretical Study of Substituent Effect on the pKa Values of Cr(CO)3(para-XC6H4COOH) Complexes. Russ. J. Phys. Chem. 93, 1537–1542 (2019). https://doi.org/10.1134/S0036024419080247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419080247

Keywords:

Navigation