Skip to main content
Log in

Theoretical studies on the structural, spectroscopic, thermodynamic, and electronic properties of zoledronic acid

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure, spectroscopic, thermodynamic, and electronic properties of zoledronic acid (ZL, 1-hydroxy- 2-(1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid), typical third-generation nitrogen-containing bisphosphonates (N-BPs), have been investigated systematically. Six conformations are taken into account, including three unprotonated and three protonated structures. They are optimized by four different density functional theory (DFT) methods combined with four different basis sets to evaluate their performance in predicting the structural and spectral features of ZL. Thermodynamic properties are calculated based on the harmonic vibrational analysis, including the standard heat capacity (C 0p,m ), entropy (S 0m ), and enthalpy (S 0m ). The 1H and 13C NMR chemical shifts are calculated using the GIAO method and compared with the experimental data. Molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses are also performed to study the electronic characteristics of the title compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jung, S. Bisaz, and H. Fleisch, Calcif. Tissue Res., 11, 269–280 (1973).

    Article  CAS  Google Scholar 

  2. R. Graham and G. Russell, Bone, 49, 2–19 (2011).

    Article  Google Scholar 

  3. G. A. Roda and T. J. Martin, Science, 289, 1508–1514 (2000).

    Article  Google Scholar 

  4. F. P. Coxon, K. Thompson, and M. J. Rogers, Curr. Opin. Pharmacol., 6, 307–312 (2006).

    Article  CAS  Google Scholar 

  5. L. Qiu, J.-G. Lin, L.-Q. Wang, et al., Aust. J. Chem., 67, 192–205 (2014).

    CAS  Google Scholar 

  6. L. I. Plotkin, S. C. Manolagas, and T. Bellido, Bone, 39, 443–452 (2006).

    Article  CAS  Google Scholar 

  7. J. Zekri, M. Mansour, and S. M. Karim, J. Bone Oncol., 3, 25–35 (2014).

    Article  Google Scholar 

  8. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA (1996).

    Google Scholar 

  9. M. Kurt, T. R. Sertbakan, and M. Ozduran, Spectrochim. Acta, Part A, 70, 664–673 (2008).

    Article  CAS  Google Scholar 

  10. C. Ravikumar, I. H. Joe, and V. S. Jayakumar, Chem. Phys. Lett., 460, 552–558 (2008).

    Article  CAS  Google Scholar 

  11. R. Ruscica, M. Bianchi, M. Quintero, et al., J. Pharm. Sci., 99, 4962–4972 (2010).

    Article  CAS  Google Scholar 

  12. V. V. Chernyshev, S. V. Shkavrov, K. A. Paseshnichenko, et al., Acta Crystallogr., C69, 263–266 (2013).

    Google Scholar 

  13. R. D. Dennington, T. A. Ketith, and J. M. Millam, GaussView 5, Gaussian Inc. (2008).

    Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, R. Nakajima, Y. Honda, O. Kilao, H. Nakai, T. Verven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Ragavachari, A. Rendell, J. C. Burant, S. J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strattmann, O. Yazyev, A. J. Austin, R. Cammi, J. W. Ochetrski, R. L. Martin, K. Morokuma, V. G. Zakrazawski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).

    Google Scholar 

  15. F. Karaboga, U. Soykan, M. Dogruer, et al., Spectrochim. Acta, Part A, 113, 80–91 (2013).

    Article  CAS  Google Scholar 

  16. M. Malik and D. Michalska, Spectrochim. Acta, Part A, 125, 431–439 (2014).

    Article  CAS  Google Scholar 

  17. P. P. Fehér, M. Purgel, and F. Joó, Comput. Theor. Chem., 1045, 113–122 (2014).

    Article  Google Scholar 

  18. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput., 1, 415–423 (2005).

    Article  CAS  Google Scholar 

  19. H. R. Leverentz, H. W. Qi, and D. G. Truhlar, J. Chem. Theory Comput., 9, 995–1006 (2013).

    Article  CAS  Google Scholar 

  20. P. C. Hariharan and J. A. Pople, Theor. Chem. Acc., 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  21. V. A. Rassolov, J. A. Pople, M. A. Ratner, et al., J. Chem. Phys., 109, 1223–1229 (1988).

    Article  Google Scholar 

  22. R. Krishnan, J. S. Binkley, R. Seeger, et al., J. Chem. Phys., 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  23. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, 5639–5648 (1980).

    Article  CAS  Google Scholar 

  24. M. P. Andersson and P. Uvdal, J. Phys. Chem., 109, 2937–2941 (2005).

    Article  CAS  Google Scholar 

  25. K. K. Irikura, R. D. Johnson, and R. N. Kacker, J. Phys. Chem., 109, 8430–8437 (2005).

    Article  CAS  Google Scholar 

  26. J. P. Merrick, D. Moran, and L. Radom, J. Phys. Chem., 111, 11683–11700 (2007).

    Article  CAS  Google Scholar 

  27. S. F. Tayyari, S. Holakoei, and S. J. Mahdizadeh, J. Mol. Struct., 1041, 190–199 (2013).

    Article  CAS  Google Scholar 

  28. T. L. Hill, Introduction to Statistical Thermodynamics, Addision-Wesley Publishing Company, N. Y. (1960).

    Google Scholar 

  29. J. J. Manaj, D. Maciewska, and I. Waver, Magn. Reson. Chem., 38, 482–485 (2000).

    Article  Google Scholar 

  30. H. Yuksek, I. Cakmak, S. Sadi, et al., Int. J. Mol. Sci., 6, 219–229 (2005).

    Article  CAS  Google Scholar 

  31. K. Wolinski, J. F. Hilton, and P. Pulay, J. Chem. Soc., 112, 8251–8260 (1990).

    Article  CAS  Google Scholar 

  32. A. M. Amado, S. M. Fiuza, M. P. Marques, et al., J. Chem. Phys., 127, 185104–185114 (2007).

    Article  Google Scholar 

  33. L. P. Chen, Master Thesis NO. TQ463, R96, Jiangnan University, Wuxi (2013).

    Google Scholar 

  34. A. Juillard, G. Falgayrac, B. Cortet, et al., Bone, 47, 895–904 (2010).

    Article  CAS  Google Scholar 

  35. X. Q. Bai, Master Thesis NO. TQ463.6, Chongqing University, Chongqing (2005).

    Google Scholar 

  36. L. Qiu, Q.-Z. Liu, Y. Wang, et al., Struct. Chem., 26, 845–858 (2015).

    Article  CAS  Google Scholar 

  37. M. Govindarajan and M. Karabacak, Spectrochim. Acta, Part A, 96, 421–435 (2012).

    Article  CAS  Google Scholar 

  38. A. E. Reed and F. Weinhold, J. Chem. Phys., 83, 1736–1740 (1985).

    Article  CAS  Google Scholar 

  39. R. H. Petrucci, W. S. Harwood, F. G. Herring, et al., Pearson Education Inc., New Jersey (2007).

  40. P. Thul, V. P. Gupta, V. J. Ram, et al., Spectrochim. Acta, Part A, 75, 251–260 (2010).

    Article  Google Scholar 

  41. P. Politzer and J. S. Murray, Theor. Chem. Acc., 108, 134–142 (2002).

    Article  CAS  Google Scholar 

  42. F. J. Luque, J. M. Lopez, and M. Orozco, Theor. Chem. Acc., 103, 343–345 (2000).

    Article  CAS  Google Scholar 

  43. I. Fleming, Frontier Oribitals, Organic Chemical Reactions, Wiley, London (1976).

    Google Scholar 

  44. J. Aihara, J. Phys. Chem., 103, 7487–7495 (1999).

    Article  CAS  Google Scholar 

  45. D. Sajan, K. Udaya Lakshmi, Y. Erdogdu, et al., Spectrochim. Acta, Part A, 78, 113–121 (2011).

    Article  CAS  Google Scholar 

  46. B. Eren and A. Unal, Spectrochim. Acta, Part A, 103, 222–231 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Qiu.

Additional information

Original Russian Text © 2015 Q. Z. Liu, Y. Wang, L. Qiu, T. F. Wang, S. N. Luo, H. L. Yuan, J. G. Lin.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1377-1388, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q.Z., Wang, Y., Qiu, L. et al. Theoretical studies on the structural, spectroscopic, thermodynamic, and electronic properties of zoledronic acid. J Struct Chem 56, 1313–1324 (2015). https://doi.org/10.1134/S0022476615070124

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070124

Keywords

Navigation