Skip to main content
Log in

Density functional theory study of the rotational barriers, conformational preference, and vibrational spectra of 2-formylfuran and 3-formylfuran

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The torsional potentials, molecular structures, conformational stability, and vibrational wavenumbers for the rotational isomers of 2-formylfuran and 3-formylfuran are computed using the density functional theory (B3LYP) method with the 6-31+G* basis set. All structures are fully optimized and the optimized geometries, rotational constants, dipole moments, and energies are presented. From the computations, both 2-formylfuran and 3-formylfuran are predicted to exist predominantly in trans conformation with a cis–trans rotational barrier of 11.19 kcal/mol and 8.10 kcal/mol, respectively. The vibrational wavenumbers and the corresponding vibrational assignments of the molecules in the C s symmetry are examined and the infrared spectra of the molecules are simulated using the wavenumbers and the corresponding intensities obtained from the computations. The effect of solvents on the conformational stability of all the molecules in nine different solvents (heptane, chloroform, tetrahydrofuran, dichloroethane, acetone, ethanol, methanol, dimethylsulfoxide, and water) is investigated. The integral equation formalism in the polarizable continuum model (IEF-PCM) is used for all solution phase computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allen and H. J. Bernstein, Can. J. Chem., 33, 1055–1061 (1955).

    Article  CAS  Google Scholar 

  2. G. J. Karabatsos and F. M. Vane, J. Am. Chem. Soc., 85, 3886–3888 (1963).

    Article  CAS  Google Scholar 

  3. T. S. Little, J. Qiu, and J. R. Durig, Spectrochim. Acta A, 45, 789–794 (1989).

    Article  Google Scholar 

  4. F. A. Miller, W. G. Fateley, and R. E. Witkowski, Spectrochim. Acta A, 23, 891–908 (1967).

    Article  CAS  Google Scholar 

  5. J. Banki, F. Billes, M. Gal, A. Grofcsik, G. Jalsovsky, and L. Sztraka, J. Mol. Struct., 142, 351–354 (1986).

    Article  CAS  Google Scholar 

  6. C. L. Chen and G. L. D. Ritchie, J. Chem. Soc., Perkin Trans. 2, 10, 1461–1465 (1973).

    Article  Google Scholar 

  7. K. K. Baldridge, V. Jonas, and A. D. Bain, J. Chem. Phys., 113, 7519–7529 (2000).

    Article  CAS  Google Scholar 

  8. T. Ilieus, M. Bolboaca, R. Pacurariu, D. Maniu, and W. Kiefer, J. Raman Spectrosc., 34, 705–710 (2003).

    Article  Google Scholar 

  9. M. Rogojerov, G. Keresztury, and B. Jordanov, Spectrochim. Acta A, 61, 1661–1670 (2005).

    Article  CAS  Google Scholar 

  10. R. A. Motiyenko, E. A. Alelseev, S. F. Dyubko, and F. J. Lovas, J. Mol. Spectrosc., 240, 93–101 (2006).

    Article  CAS  Google Scholar 

  11. A. Bain and D. P. Hazendonk, J. Phys. Chem. A, 101, 7182–7188 (1997).

    Article  CAS  Google Scholar 

  12. R. Rivelinor, K. Coutinho, and S. Canuto, J. Phys. Chem. B, 106, 12317–12322 (2002).

    Article  Google Scholar 

  13. H. Ashish and P. Ramasami, Mol. Phys., 106, 175–185 (2008).

    Article  CAS  Google Scholar 

  14. I. G. John, G. L. D. Ritchie, and L. Radom, J. Chem. Soc., Perkin Trans. 2, 12, 1601–1607 (1977).

    Article  Google Scholar 

  15. L. Lunazzi and G. Placucci, Tetrahedron, 32, 6427–6434 (1991).

    Article  Google Scholar 

  16. M. J. Frisch et al, Gaussian 03, Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  17. A. D. Becke, J. Chem. Phys., 98, 5648–5653 (1993).

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  19. E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys., 107, 3032–3041 (1997).

    Article  Google Scholar 

  20. B. Mennucci and J. Tomasi, J. Chem. Phys., 106, 5151–5158 (1997).

    Article  CAS  Google Scholar 

  21. J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct.: THEOCHEM, 464, 211–226 (1999).

    Article  CAS  Google Scholar 

  22. Y. J. Umar, J. Mol. Struct.: THEOCHEM, 728, 111–115 (2005).

    Article  CAS  Google Scholar 

  23. Y. Umar, T. Jimoh, and M. A. Morsy, J. Mol. Struct.: THEOCHEM, 725, 157–161 (2005).

    Article  CAS  Google Scholar 

  24. Y. Umar, Spectrochim. Acta A, 64, 568–573 (2006).

    Article  Google Scholar 

  25. Y. Umar, Spectrochim. Acta A, 71, 1907–1913 (2009).

    Article  Google Scholar 

  26. R. Dennington II, T. Keith, J. Millam, et al., GaussView, Version 3.09, Semichem Inc., Shawnee Mission, KS (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Umar.

Additional information

Original Russian Text © 2015 Y. Umar, J. Tijani.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1369-1376, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, Y., Tijani, J. Density functional theory study of the rotational barriers, conformational preference, and vibrational spectra of 2-formylfuran and 3-formylfuran. J Struct Chem 56, 1305–1312 (2015). https://doi.org/10.1134/S0022476615070112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070112

Keywords

Navigation