Skip to main content
Log in

Phase composition of thin silicon carbonitride films obtained by plazma endanced chemical vapour deposition using organosilicon compounds

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

High-temperature silicon carbonitride films are synthesized by plasma decomposition of gas mixtures of 1,1,1,3,3,3-hexamethyldisilazane (HMDS) (the synonym used by IUPAC bis(trimethylsilyl) amine) with ammonia or helium in the temperature range of 673–1273 K. It is shown that silicon carbonitride films, obtained in high temperature processes of the plasma decomposition of organosilicon compounds, are nanocomposite. In their amorphous matrix the crystals belonging to the phases of the α-Si3−n C n N4 family and impurity graphite are embedded. To clarify the previously obtained data by means of the X-ray diffractometry using synchrotron radiation, they are compared with the published results of modeling the structure of these phases. It is shown that nanocrystals belonging to the phases of α-Si3N4, α-Si2CN4, α-SiC2N4, and α-C3N4 are present in the films. An increase in the ammonia concentration in the initial gas mixture causes a decrease in the film hardness from 24 GPa to 16 GPa due to the increased content of α-Si3N4 and α-Si2CN4 nanocrystals having a lower hardness compared to α-C3N4 and α-SiC2N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Du, D. C. Li, J. L. He, et al., Diamond Relat. Mater., 18, 72–75 (2009).

    Article  CAS  Google Scholar 

  2. J. V. Badding, Adv. Mater., 9, 877–886 (1997).

    Article  CAS  Google Scholar 

  3. J. M. Léger and J. Haines, Endeavour, 21, No. 3, 121–124 (1997).

    Article  Google Scholar 

  4. S. Vepřek, J. Vac. Sci. Technol., A, 17, 2401 (1999).

    Article  Google Scholar 

  5. A. Y. Liu and M. L. Cohen, Science, 245, 841/842 (1989).

    Article  Google Scholar 

  6. D. M. Teter and R. J. Hemley, Science, 271, 53–55 (1996).

    Article  CAS  Google Scholar 

  7. J. L. He, L. C. Guo, X. J. Guo, et al., Appl. Phys. Lett., 88, 101906–101908 (2006).

    Article  Google Scholar 

  8. R. Riedel, H.-J. Kleebe, H. Schonfelder, and F. Aldinger, Nature, 374, 526–528 (1995).

    Article  CAS  Google Scholar 

  9. A. Badzian, T. Badzian, R. Roy, and W. Drawl, Thin Solid Films, 354, 148–153 (1999).

    Article  CAS  Google Scholar 

  10. A. Bendeddouche, R. Berjoan, E. Beche, and R. Hillel, Surf. Coat. Technol., 111, 184–190 (1999).

    Article  CAS  Google Scholar 

  11. T. Thärigen, G. Lippold, V. Riede, et al., Thin Solid Films, 348, 103–113 (1999).

    Article  Google Scholar 

  12. X.-M. He, T. N. Taylor, R. S. Lillard, et al., J. Phys. Condens. Matter, 12, L591–L597 (2000).

    Article  CAS  Google Scholar 

  13. D. H. Zhang, Y. Gao, J. Wei, and Z. Q. Mo, Thin Solid Films, 377/378, 607–610 (2000).

    Article  Google Scholar 

  14. L.-A. Liew, Y. Liu, R. Luo, et al., Sens. Actuators, A, 95, 120 (2002).

    Article  CAS  Google Scholar 

  15. S. K. Mishra, Int. J. Appl. Ceram. Technol., 6, 345–354 (2009).

    Article  CAS  Google Scholar 

  16. L. C. Chen, C. Y. Yang, D. M. Bhusari, et al., Diamond Relat. Mater., 5, 514–518 (1996).

    Article  CAS  Google Scholar 

  17. L. C. Chen, C. K. Chen, and S. L. Wei, Appl. Phys. Lett., 72, 2463–2465 (1998).

    Article  CAS  Google Scholar 

  18. D. Y. Lin, C. F. Li, Y. S. Huang, et al., Phys. Rev., B56, 6498 (1997).

    Article  Google Scholar 

  19. A. Badzian, T. Badzian, W. D. Drawl, and R. Roy, Diamond Relat. Mater., 7, 1519–1525 (1998).

    Article  CAS  Google Scholar 

  20. E. J. Liang, J. W. Zhang, J. Leme, et al., Thin Solid Films, 469/470, 410–415 (2004).

    Article  Google Scholar 

  21. X. W. Chen, C. C. Huang, Y. Y. Lin, et al., Diamond Relat. Mater., 14, 1126–1130 (2005).

    Article  CAS  Google Scholar 

  22. C. W. Chen, M. H. Lee, L. C. Chen, and K. H. Chen, Diamond Relat. Mater., 13, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  23. N. I. Fainer, M. L. Kosinova, Yu. M. Rumyantsev, and F. A. Kuznetsov, J. Phys. IV, 9, Pr8-769–Pr8-775 (1999).

    Google Scholar 

  24. N. I. Fainer, Yu. M. Rumiantsev, and M. L. Kosinova, Khimiya v Interesakh Ustoichivogo Razvitiya, 9, 865–870 (2001).

    Google Scholar 

  25. N. I. Fainer, Yu. M. Rumiantsev, and M. L. Kosinova, Khimiya v Interesakh Ustoichivogo Razvitiya, 9, 871–877 (2001).

    Google Scholar 

  26. N. I. Fainer, M. L. Kosinova, Yu. M. Rumiantsev, et al., in: Diamond Films and Films of Related Materials [in Russian], Kontrast, Khar’kov (2002), p. 303–307.

    Google Scholar 

  27. N. I. Fainer, M. L. Kosinova, Yu. M. Rumyantsev, et al., ECS Proc. EUROCVD-15, 2005–09, 1074–1081 (2005).

    Google Scholar 

  28. N. I. Fainer, Yu. M. Rumyantsev, M. L. Kosinova, and F. A. Kuznetsov, J. Struct. Chem., 45, Suppl., S65–S70 (2004).

    Article  CAS  Google Scholar 

  29. E. A. Maksimovskii, N. I. Fainer, Yu. M. Rumyantsev, and M. L. Kosinova, J. Struct. Chem., 45, Suppl., S60–S64 (2004).

    Article  Google Scholar 

  30. N. Fainer, Y. Rumyantsev, M. Kosinova, et al., Surf. Coat. Technol., 201, 9269–9274 (2007).

    Article  CAS  Google Scholar 

  31. N. I. Fainer, M. L. Kosinova, Yu. M. Rumyantsev, et al., J. Phys. Chem. Solids, 69, Nos. 2/3, 661–668 (2008).

    Article  CAS  Google Scholar 

  32. N. I. Fainer, A. N. Golubenko, Yu. M. Rumyantsev, and E. A. Maksimovskii, Glass Phys. Chem., 35, No. 3, 274–283 (2009).

    Article  CAS  Google Scholar 

  33. N. I. Fainer, Yu. M. Rumyantsev, V. G. Kesler, et al., ECS Trans., 25, No. 8, Part 2, 921–926 (2009).

    Article  CAS  Google Scholar 

  34. N. I. Fainer, A. N. Golubenko, Yu. M. Rumiantsev, et al., Glass Phys. Chem., 38, No. 1, 15–26 (2012).

    Article  CAS  Google Scholar 

  35. N. I. Fainer, Russ. J. Gen. Chem., 82, No. 1, 43–52 (2012).

    Article  CAS  Google Scholar 

  36. N. I. Fainer, A. N. Golubenko, Yu. M. Rumyantsev, et al., Glass Phys. Chem., 39, No. 1, 77–88 (2013).

    Article  CAS  Google Scholar 

  37. N. I. Fainer, M. L. Kosinova, G. S. Yurjev, et. al., Nucl. Instrum. Methods Phys. Res., Sect. A, 448, 294–298 (2000).

    Article  CAS  Google Scholar 

  38. N. I. Fainer, E. A. Maximovski, M. L. Kosinova, and Yu. M. Rumyantsev, Mater. Sci. Forum, 378–381, 493–498 (2001).

    Article  Google Scholar 

  39. N. I. Fainer, E. A. Maximovskii, Yu. M. Rumyantsev, et. al., Nucl. Instrum. Methods Phys. Res., Sect. A, 470, No. 1/2, 193–197 (2001).

    Article  CAS  Google Scholar 

  40. N. I. Fainer, Yu. M. Rumyantsev, and M. L. Kosinova, Ross. Khim. Zhurn., 45, No. 3, 101–108 (2001).

    CAS  Google Scholar 

  41. P. Gao, J. Xu, Y. Piao, et al., Surf. Coat. Technol., 201, 5298–5301 (2007).

    Article  CAS  Google Scholar 

  42. S.-Y. Chang, J.-Y. Chang, S.-J. Lin, et al., J. Electrochem. Soc., 155, No. 2, G39–G43 (2008).

    Article  CAS  Google Scholar 

  43. J. Huran, A. Valovic, M. Kucera, et al., J. Electr. Eng., 63, No. 5, 333–335 (2012).

    Google Scholar 

  44. H. Du, B. Gallois, and K. E. Gonsalves, Chem. Mater., 1, No. 6, 569–571 (1989).

    Article  CAS  Google Scholar 

  45. N. I. Fainer, Yu. M. Rumyantsev, M. L. Kosinova, et al., Glass Phys. Chem., 31, No. 4, 427–432 (2005).

    Article  CAS  Google Scholar 

  46. P. S. Hoffmann, N. I. Fainer, O. Baake, et al., Thin Solid Films, 520, 5906–5913 (2012).

    Article  CAS  Google Scholar 

  47. S. Trassl, M. Puchinger, E. Rossler, and G. Ziegler, J. Eur. Ceram. Soc., 23, 781–789 (2003).

    Article  CAS  Google Scholar 

  48. O. Durand-Drouhin, M. Lejeune, M. Clin, and J. Henocque, Mater. Sci. Semicond. Process, 4, 335–338 (2001).

    Article  CAS  Google Scholar 

  49. R. Kurt, R. Sanjines, A. Karimi, and F. Levy, Diamond Relat. Mater., 9, 566–572 (2000).

    Article  CAS  Google Scholar 

  50. JCPDS International Center for Diffraction Data, Card no. 41-1487, USA (1988).

  51. JCPDS International Center for Diffraction Data, Card no. 41-0360, USA (1988).

  52. W. Kraus and G. Nozle, Powder Cell for Windows (Version 2.4), Berlin (1999).

    Google Scholar 

  53. D. Balzar, P. W. Stephens, and H. Ledbetter, Adv. X-Ray Anal., 40, CD-ROM (1998).

  54. D. Balzar, H. Ledbetter, P. W. Stephens, et al., Phys. Rev. B, 59, No. 5, 3414–3420 (1999).

    Article  CAS  Google Scholar 

  55. Á. G. de la Torre, M. C. Martín-Sedeño, L. León-Reina, et al., in: Synchrotron Radiation in Mineralogy, M. Suárez, E. Y. Ayuso, and E. M. Manchado (eds.) (2009), p. 29–59.

  56. D. Balzar, P. W. Stephens, and H. Ledbetter, Fizika A, 6, No. 1, 41–50 (1997).

    CAS  Google Scholar 

  57. R. E. Dinnebier and K. Friese, in: Introduction to the Mineralogical Science, P. Tropper (ed.), Eolss Publishers, Oxford, UK (2003), ch. 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Fainer.

Additional information

Original Russian Text © 2015 N. I. Fainer, V. I. Kosyakov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 1, pp. 171–182, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fainer, N.I., Kosyakov, V.I. Phase composition of thin silicon carbonitride films obtained by plazma endanced chemical vapour deposition using organosilicon compounds. J Struct Chem 56, 163–174 (2015). https://doi.org/10.1134/S0022476615010229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615010229

Keywords

Navigation