Skip to main content
Log in

Comparative estimation of the energies of intramolecular C-H…O, N-H…O, and O-H…O hydrogen bonds according to the QTAIM analysis and NMR spectroscopy data

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The energies of intramolecular C-H…O, N-H…O, and O-H…O hydrogen bonds in model compounds are empirically estimated based on the values of the hydrogen bond induced weak-field shift of the bridging hydrogen atom signal in the 1H NMR spectrum. It is supported by a theoretical estimation of these energies based on the electron density value at the hydrogen bond critical point calculated within the QTAIM method. Good agreement between the empirical and theoretical estimates is found, which gives evidence of their reliability. It is shown that from the standpoint of their strength the intramolecular N-H…O and O-H…O hydrogen bonds can be classified as moderate whereas the intramolecular C-H…O hydrogen bonds must be classified as very weak interactions similar in their energy significance to van der Waals interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Jefrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford (1997).

    Google Scholar 

  2. S. J. Grabowski, Hydrogen Bonding: New Insight, Dordrecht, Springer (2006).

    Book  Google Scholar 

  3. R. J. Abraham and M. Mobli, Magn. Res. Chem., 45, No. 7, 865 (2007).

    Article  CAS  Google Scholar 

  4. Q. Gu, C. Trindle, and J. L. Knee, J. Chem. Phys., 137, No. 9, 091101 (2012).

    Article  Google Scholar 

  5. R. W. F. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford (1990).

    Google Scholar 

  6. S. J. Grabowski, J. Mol. Struct., 615, Nos. 1–3, 239 (2002).

    Article  CAS  Google Scholar 

  7. G. S. Denisov, M. I. Sheikh-Zade, and M. V. Eskina, Zh. Prikl. Spektroskop., 27, No. 6, 1049 (1977).

    CAS  Google Scholar 

  8. M. S. Rudner, S. Jeremic, K. A. Petterson, D. R. Kent, K. A. Brown, M. D. Drake, W. A. Goddard, and J. D. Roberts, J. Phys. Chem. A, 109, No. 40, 9076 (2005).

    Article  CAS  Google Scholar 

  9. S. J. Grabowski, J. Phys. Org. Chem., 16, No. 10, 797 (2003).

    Article  CAS  Google Scholar 

  10. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev., 105, No. 10, 3513 (2005).

    Article  CAS  Google Scholar 

  11. G. Buemi, Electronic J. Mol. Design, 5, No. 6, 331 (2006).

    CAS  Google Scholar 

  12. G. Buemi and F. Zuccarello, J. Mol. Struct. (Theochem.), 581, 71 (2002).

    Article  CAS  Google Scholar 

  13. T.-H. Tang1, E. Deretey, S. J. Knak Jensen, and G. Csizmadia, Eur. Phys. J. D, 37, No. 2, 217 (2006).

    Article  CAS  Google Scholar 

  14. I. Mata, I. Alkorta, E. Molins, and E. Espinosa, Chem. Eur. J., 16, No. 8, 2442 (2010).

    Article  CAS  Google Scholar 

  15. J. Y.-J. Chen and K. J. Naidoo, J. Chem. Phys., 107, No. 35, 9558 (2003).

    Article  CAS  Google Scholar 

  16. P. Sanz, O. Mo, and M. Yanez, Phys. Chem. Chem. Phys., 5, No. 14, 2942 (2003).

    Article  CAS  Google Scholar 

  17. G. A. Jeffrey, J. Mol. Struct., 485, 293 (1999).

    Article  Google Scholar 

  18. S. Scheiner, in: In Theory and Applications of Computational Chemistry: The First Forthy Years, C. Dykstra (ed.), Elsevier (2005).

  19. A. V. Vashchenko and A. V. Afonin, J. Struct. Chem., 54, No. 6, 1029–1033 (2013).

    Article  CAS  Google Scholar 

  20. T. Schaefer, J. Phys. Chem., 79, No. 17, 1888 (1975).

    Article  CAS  Google Scholar 

  21. A. V. Afonin, I. A. Ushakov, A. V. Vashchenko, E. V. Kondrashov, and A. Yu. Rulev, Magn. Res. Chem., 48, No. 9, 661 (2010).

    Article  CAS  Google Scholar 

  22. A. V. Afonin, V. K. Voronov, B. V. Trzhtcinskaia, E. V. Rudakova, and V. V. Kei’ko, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 1264 (1987).

    Google Scholar 

  23. A. V. Afonin, I. A. Ushakov, S. V. Zinchenko, O. A. Tarasova, and B. A. Trofimov, Magn. Res. Chem., 38, No. 12, 994 (2000).

    Article  CAS  Google Scholar 

  24. T. Yu. Nikolaenko, L. B. Bulavin and D. M. Hovorun, Phys. Chem. Chem. Phys., 14, No. 20, 7441 (2012).

    Article  Google Scholar 

  25. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, Nos. 3/4, 170 (1998).

    Article  CAS  Google Scholar 

  26. E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books (2006).

    Google Scholar 

  27. J. M. Berg, J. L. Tymoczko, and L. Stryer Biochemistry, 5th ed., Freeman, New York (2002).

    Google Scholar 

  28. A. Zupan, K. Burke, M. Emzerhof, and J. P. Perdew, J. Chem. Phys., 106, No. 24, 10184 (1997).

    Article  CAS  Google Scholar 

  29. A. Zupan, J. P. Perdew, and K. Burke, Int. J. Quantum. Chem., 61, No. 5, 835 (1997).

    Article  CAS  Google Scholar 

  30. R. F. W. Bader, Chem. Rev., 91, No. 5, 893 (1991).

    Article  CAS  Google Scholar 

  31. R. F. W. Bader, J. Phys. Chem. A, 102, No. 37, 7314 (1998).

    Article  CAS  Google Scholar 

  32. E. R. Johnson, S. Keinan, P. Mori-Sanchez, et al., J. Am. Chem. Soc., 132, No. 18, 6498 (2010).

    Article  CAS  Google Scholar 

  33. J. Contreras-Garcia, E. R. Johnson, S. Keinan, et al., J. Chem. Theory Comput., 7, No. 3, 625 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vashchenko.

Additional information

Original Russian Text © 2014 A. V. Vashchenko, A. V. Afonin.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 4, pp. 671–678, July–August, 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashchenko, A.V., Afonin, A.V. Comparative estimation of the energies of intramolecular C-H…O, N-H…O, and O-H…O hydrogen bonds according to the QTAIM analysis and NMR spectroscopy data. J Struct Chem 55, 636–643 (2014). https://doi.org/10.1134/S0022476614040076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614040076

Keywords

Navigation