Skip to main content
Log in

Quantum chemical DFT calculations of the local structure of the hydrated electron and dielectron

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The adiabatic bound state of an excess electron is calculated for a water cluster (H2O) 8 in the gas phase using the DFT-B3LYP method with the extended 6-311++G(3df,3pd) basis set. For the liquid phase the calculation is performed in the polarizable continuum model (PCM) with regard to the solvent effect (water, ɛ = 78.38) in the supermolecule-continuum approximation. The value calculated by DFT-B3LYP for the vertical binding energy (VBE) of an excess electron in the anionic cluster (VBE(H2O) 8 = 0.59 eV) agrees well with the experimental value of 0.44 eV obtained from photoelectron spectra in the gas phase. The VBE value of the excess electron calculated by PCM-B3LYP for the (H2O) 8 cluster in the liquid phase (VBE = 1.70 eV) corresponds well to the absorption band maximum λmax = 715 nm (VBE = 1.73 eV) in the optical spectrum of the hydrated electron hydr e hydr . Estimating the adiabatic binding energy (ABE)e t-hydr in the (H2O) 8 cluster (ABE = 1.63 eV), we obtain good agreement with the experimental free energy of electron hydration ΔG 0298 (e hydr ) = 1.61 eV. The local model (H2O) 2−8 of the hydrated dielectron is considered in the supermolecule-continuum approximation. It is shown that the hydrated electron and dielectron have the same characteristic local structure: -O-H{↑}H-O- and -O-H{↑↓}H-O-respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Hart and M. Anbar, The Hydrated Electron, Wiley-Interscience, New York (1970).

    Google Scholar 

  2. L. Turi and P. J. Rossky, Chem. Rev., 112, 5641–5674 (2012).

    Article  CAS  Google Scholar 

  3. E. Zurek, P. P. Edwards, and R. Hoffman, Angew. Chem. Int. Ed., 48, 8198–8232 (2009).

    Article  CAS  Google Scholar 

  4. I. A. Shkrob, J. Phys. Chem. A, 111, 5223–5231 (2007).

    Article  CAS  Google Scholar 

  5. Yu. V. Novakovskaya, Zh. Fiz. Khim., 84, No. 2, 291–306 (2010).

    Google Scholar 

  6. T. Takayanagi, T. Yoshikawa, H. Motegi, and M. Shiga, Chem. Phys. Lett., 482, Nos. 4–6, 195–200 (2009).

    Article  CAS  Google Scholar 

  7. I. I. Zakharov, J. Struct. Chem., 55, No. 1, 1–7 (2014).

    Article  CAS  Google Scholar 

  8. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  9. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–797 (1988).

    Article  CAS  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA (2003).

    Google Scholar 

  11. J. M. Herbert and M. Head-Gordon, Proc. Natl. Acad. Sci. USA, 103, No. 39, 14282–14287 (2006).

    Article  CAS  Google Scholar 

  12. A. W. Castleman and K. H. Bowen, J. Phys. Chem., 100, 12911–12944 (1996).

    Article  CAS  Google Scholar 

  13. J. V. Coe, Int. Rev. Phys. Chem., 20, No. 1, 33–58 (2001).

    Article  CAS  Google Scholar 

  14. B. C. Garrett, D. A. Dixon, D. M. Camaioni, et al., Chem. Rev., 105, 355–389 (2005).

    Article  CAS  Google Scholar 

  15. C.-G. Zhan and D. A. Dixon, J. Phys. Chem. B, 107, 4403–4417 (2003).

    Article  CAS  Google Scholar 

  16. N. Basco, G. A. Kenney, and D. C. Walker, J. Chem. Soc. D: Chem. Commun., No. 16, 917/918 (1969).

    Google Scholar 

  17. N. Basco, G. A. Kenney, S. K. Vidyarthi, and D. C. Walker, Canad. J. Chem., 50, No. 13, 2059–2070 (1972).

    Article  CAS  Google Scholar 

  18. R. N. Barnett, R. Giniger, O. Cheshnovsky, and U. Laudman, J. Phys. Chem. A, 115, No. 25, 7378–7391 (2011).

    Article  CAS  Google Scholar 

  19. K. Fueki, J. Chem. Phys., 50, 5381–5385 (1969).

    Article  CAS  Google Scholar 

  20. D. F. Feng, K. Fueki, and L. Kevan, J. Chem. Phys., 58, 3281–3294 (1973).

    Article  CAS  Google Scholar 

  21. H. P. Kaukonen, R. N. Barnett, and U. Landman, J. Chem. Phys., 97, 1365–1377 (1992).

    Article  CAS  Google Scholar 

  22. R. E. Larsen and B. J. Schwartz, J. Phys. Chem. B, 108, No. 31, 11760–11773 (2004).

    Article  CAS  Google Scholar 

  23. R. E. Larsen, W. J. Glover, and B. J. Schwartz, Science, 329, 65 (2010).

    Article  CAS  Google Scholar 

  24. L. D. Jacobson and J. M. Herbert, Science, 331, 1387-1 (2011).

    Article  Google Scholar 

  25. R. E. Larsen, W. J. Glover, and B. J. Schwartz, Science, 331, 1387–e (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Zakharov.

Additional information

Original Russian Text © 2014 I. I. Zakharov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 4, pp. 631–640, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, I.I. Quantum chemical DFT calculations of the local structure of the hydrated electron and dielectron. J Struct Chem 55, 595–604 (2014). https://doi.org/10.1134/S0022476614040027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614040027

Keywords

Navigation