Skip to main content
Log in

New polymorphic types of diamond

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The results of calculations by PM3 and LDA-DFT methods of the structure and properties of six new polymorphic types of diamond, in which all atomic sites are crystallographically equivalent, are presented. The structures of LA5 (Cmca), LA7 (Cmcm), and LA8 (I41/amd) phases are obtained as a result of stitching graphene layers and of CA9 \((Fd\bar 3m)\), CA10 \((R\bar 3m)\), and CA11 (P63/mmc) phases by stitching fullerenelike clusters. For these phases the geometrically optimized structures are calculated and the structural parameters, density, sublimation energy, bulk modulus, electron density of states, and X-ray diffraction pattern are measured. It is found that the properties of polymorphic types of diamond depend on the degree of their structure deformation in comparison with the cubic diamond structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Prog. Solid St. Chem., 21, 199 (1991).

    Article  CAS  Google Scholar 

  2. A. L. Ivanovskii, J. Superhard Materials, 35, No. 1, 1 (2013).

    Article  Google Scholar 

  3. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys., 113, No. 1, 86 (2011).

    Article  CAS  Google Scholar 

  4. V. A. Greshnyakov, E. A. Belenkov, and V. M. Berezin, Crystal Structure and Properties of Carbon Diamond-Like Phases [in Russian], South Ural State University, Chelyabinsk (2012).

    Google Scholar 

  5. F. P. Bundy and J. S. Kasper, J. Chem. Phys., 46, No. 9, 3437 (1967).

    Article  CAS  Google Scholar 

  6. C. Frondel and U. B. Marvin, Nature, 214, No. 5088, 587 (1967).

    Article  CAS  Google Scholar 

  7. F. J. M. Rietmeijer and I. D. R. Mackinnon, Nature, 326, No. 6109, 162 (1987).

    Article  CAS  Google Scholar 

  8. B. Wen, J. Zhao, M. J. Bucknum, et al., Diamond Relat. Mater., 17, No. 3, 356 (2008).

    Article  CAS  Google Scholar 

  9. R. B. Aust and H. G. Drickamer, Science, 140, No. 3568, 817 (1963).

    Article  CAS  Google Scholar 

  10. V. V. Pokropivny and A. V. Pokropivny, Phys. Solid. State, 46, No. 2, 392 (2004).

    Article  CAS  Google Scholar 

  11. N. N. Matyushenko, V. E. Strel’nitskii, and V. A. Gusev, JETP Lett., 30, No. 4, 199 (1979).

    Google Scholar 

  12. R. L. Johnston and R. Hoffmann, J. Am. Chem. Soc., 111, No. 3, 810 (1989).

    Article  CAS  Google Scholar 

  13. J. K. Burdett and S. Lee, J. Am. Chem. Soc., 107, No. 11, 3063 (1985).

    Article  CAS  Google Scholar 

  14. R. H. Baughman and D. S. Galvao, Chem. Phys. Lett., 211, No. 1, 110 (1993).

    Article  CAS  Google Scholar 

  15. P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B, 59, No. 2, 733 (1999).

    Article  CAS  Google Scholar 

  16. H. S. Domingos, J. Phys.: Condens. Matter., 16, 9083 (2004).

    CAS  Google Scholar 

  17. C. J. Pickard and R. J. Needs, Phys. Rev. B, 81, 014106 (2010).

    Article  Google Scholar 

  18. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State, 55, No. 8, 1754 (2013).

    Article  CAS  Google Scholar 

  19. E. A. Belenkov, È. N. Agalyamova, and V. A. Greshnyakov, Phys. Solid State, 54, No. 2, 433 (2012).

    Article  CAS  Google Scholar 

  20. V. A. Greshnyakov, E. A. Belenkov, Chelyabinsk State University Bulletin, Physics, 14, No. 30 (284), 5 (2012). [in Russian].

    Google Scholar 

  21. R. T. Strong, C. J. Pickard, V. Milman, et al., Phys. Rev. B, 70, 045101 (2004).

    Article  Google Scholar 

  22. X.-L. Sheng, Q.-B. Yan, F. Ye, et al., Phys. Rev. Lett., 106, 155703 (2011).

    Article  Google Scholar 

  23. M. Hu, F. Tian, Z. Zhao, et al., J. Phys. Chem. C, 116, 24233 (2012).

    Article  CAS  Google Scholar 

  24. J. J. P. Stewart, J. Comput. Chem., 10, No. 2, 209 (1989).

    Article  CAS  Google Scholar 

  25. A. Pokropivny and S. Volz, Phys. Status Solidi B, 249, No. 9, 1704 (2012).

    Article  CAS  Google Scholar 

  26. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys., Condens. Matter., 21, No. 39, 395502 (2009).

    Article  Google Scholar 

  27. P. Hohenberg, Phys. Rev., 136, No. 3B, 864 (1964).

    Article  Google Scholar 

  28. J. P. Perdew and A. Zunger, Phys. Rev. B, 23, No. 10, 5048 (1981).

    Article  CAS  Google Scholar 

  29. N. Troullier and J. L. Martins, Phys. Rev. B, 43, No. 3, 1993 (1991).

    Article  CAS  Google Scholar 

  30. V. A. Greshnyakov and E. A. Belenkov, in: Proceedings of the Traditional International Conference on Phase Transitions and Related Critical and Nonlinear Phenomena in Condensed Media, Makhachkala (2009), p. 137. [in Russian].

    Google Scholar 

  31. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, and Electron Microscopy [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  32. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications, Noyes, Park Ridge (1993).

    Google Scholar 

  33. S. Fahy and S. G. Louie, Phys. Rev. B, 36, No. 6, 3373 (1987).

    Article  CAS  Google Scholar 

  34. M. H. Grimsditch and A. K. Ramdas, Phys. Rev. B, 11, No. 8, 3139 (1975).

    Article  CAS  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics, Wiley, New York (1996).

    Google Scholar 

  36. H. E. Swanson and R. K. Fuyat, Natl. Bur. Stand., Wiley, New York (1955), Circ. 539, V. II, 5.

    Google Scholar 

  37. I. Sanc, Pattern: 00-041-1478, Graphite-2H, Polytechna, Foreign Trade Corporation, ICDD Grant-in-Aid., Panska, Czechoslovakia (1990).

    Google Scholar 

  38. A. N. Enyashin and A. L. Ivanovskii, Phys. Stat. Solid. B, 248, No. 8, 1879 (2011).

    Article  CAS  Google Scholar 

  39. J. Nisar, X. Jiang, B. Pathak, et al., Nanotechnology, 23, No. 38, 385704 (2012).

    Article  Google Scholar 

  40. Q. Song, B. Wang, K. Deng, et al., J. Mater. Chem. C, 1, No. 1, 38 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Original Russian Text © 2014 E. A. Belenkov, V. A. Greshnyakov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 3, pp. 439–447, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkov, E.A., Greshnyakov, V.A. New polymorphic types of diamond. J Struct Chem 55, 409–417 (2014). https://doi.org/10.1134/S0022476614030032

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614030032

Keywords

Navigation