Skip to main content
Log in

Structure, properties, and possible mechanisms of formation of diamond-like phases

  • Fullerenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An analysis was performed for relations between the structural parameters and the properties of 36 carbon diamond-like phases consisting of atoms occupying crystallographically equivalent positions. It was found that the crystal lattices of these phases were in stressed states with respect to the cubic diamond lattice. The density of diamond-like phases, their sublimation energies, bulk moduli, hardnesses, and band gaps depend on the deformation parameters Def and Str. The most stable phases must be phases with minimal parameters Def and Str and also with ring parameter Rng that is most close to the corresponding parameter of cubic diamond. The structures and energy characteristics of fullerites, nanotube bundles, and graphene layers of which diamond-like phases can be obtained as a result of polymerization at high pressures have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55 (8), 1754 (2013).

    Article  ADS  Google Scholar 

  2. E. A. Belenkov and V. A. Greshnyakov, New Carbon Mater. 28 (4), 273 (2013).

    Article  Google Scholar 

  3. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 113 (1), 86 (2011).

    Article  ADS  Google Scholar 

  4. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications (Noyes, Park Ridge, New Jersey, United States, 1993).

    Google Scholar 

  5. F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature (London) 176 (4471), 51 (1955).

    Article  ADS  Google Scholar 

  6. W. G. Eversole, US Patent 3030188 (April 17, 1962).

  7. B. V. Deryagin and D. V. Fedoseev, Growth of Diamonds and Graphite from a Gaseous Phase (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  8. H. J. Hibshman, US Patent 3371996 (March 5, 1968).

  9. Y. Hirose, in Applications of Diamond Films and Related Materials, Ed. by Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman (Elsevier, Amsterdam, 1991), p. 471.

  10. Y. Saito, K. Sato, H. Tanaka, K. Fujita, and S. Matsuda, J. Mater. Sci. 23 (3), 842 (1988).

    Article  ADS  Google Scholar 

  11. K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino, Appl. Phys. Lett. 52 (6), 437 (1988).

    Article  ADS  Google Scholar 

  12. M. Sommer and F. W. Smith, J. Mater. Res. 5 (11), 2433 (1990).

    Article  ADS  Google Scholar 

  13. I. I. Aksenov, S. I. Vakula, V. G. Padalka, V. E. Streletskii, and V. M. Khoroshikh, Sov. Phys. Tech. Phys. 25 (9), 1164 (1980).

    Google Scholar 

  14. V. V. Danilenko, Phys. Solid State 46 (4), 711 (2004).

    Article  ADS  Google Scholar 

  15. L. Yang, P. W. May, L. Yinb, J. A. Smith, and K. N. Rosser, Diamond Relat. Mater. 16 (4–7), 725 (2007).

    Article  ADS  Google Scholar 

  16. A. A. Lyalin, A. V. Simakin, V. A. Bobyrev, E. N. Lubnin, and G. A. Shafeev, Kvantovaya Elektron. (Moscow) 27 (1), 73 (1999).

    Google Scholar 

  17. Yu. A. Solov’ev, V. K. Baranov, G. V. Baranov, and S. Yu. Solov’ev, RF Patent 2243153 (December 27, 2004).

  18. S. Welz, Y. Gogotsi, and M. J. McNallan, J. Appl. Phys. 93 (7), 4207 (2003).

    Article  ADS  Google Scholar 

  19. A. M. Mishin, RF Patent 2063797 (July 20, 1996).

  20. P. Aublanc, V. P. Novikov, L. V. Kuznetsova, and M. Mermoux, Diamond Relat. Mater. 10 (3–7), 942 (2001).

    Article  ADS  Google Scholar 

  21. M. V. Baidakova, Yu. A. Kukushkina, A. A. Sitnikova, M. A. Yagovkina, D. A. Kirilenko, V. V. Sokolov, M. S. Shestakov, A. Ya. Vul’, B. Zousman, and O. Levinson, Phys. Solid State 55 (8), 1747 (2013).

    Article  ADS  Google Scholar 

  22. Q. Huang, D. Yu, Bo Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, Nature (London) 510 (7504), 250 (2014).

    Article  ADS  Google Scholar 

  23. L. Cao, C. Gao, H. Sun, G. Zou, Z. Zhang, X. Zhang, M. He, M. Zhang, Y. Li, J. Zhang, D. Dai, L. Sun, and W. Wang, Carbon 39 (3), 311 (2001).

    Article  Google Scholar 

  24. B. Wei, J. Zhang, J. Liang, and D. Wu, Carbon 36 (7–8), 997 (1998).

    Article  Google Scholar 

  25. F. P. Bundy, J. Chem. Phys. 38 (3), 631 (1963).

  26. P. S. De Carly and T. S. Jamieson, Science (Washington) 133 (3466), 1821 (1961).

    Article  ADS  Google Scholar 

  27. D. J. Erskine and W. J. Nellis, J. Appl. Phys. 71 (10), 4882 (1992).

    Article  ADS  Google Scholar 

  28. A. Kh. Khachatryan, S. G. Aloyan, P. W. May, R. Sargsyan, V. A. Khachatryan, and V. S. Baghdasaryan, Diamond Relat. Mater. 17 (6), 931 (2008).

    Article  ADS  Google Scholar 

  29. N. V. Galyshkin, RF Patent 2052378 (January 20, 1996).

  30. S. P. Zubrilov and A. S. Zubrilov, RF Patent 2083489 (July 10, 1997).

  31. J. J. Cuomo, J. P. Doyle, J. Bruley, and J. C. Liu, Appl. Phys. Lett. 58 (5), 466 (1991).

    Article  ADS  Google Scholar 

  32. R. B. Aust and H. G. Drickamer, Science (Washington) 140 (3568), 817 (1963).

    Article  ADS  Google Scholar 

  33. V. V. Pokropivny and A. V. Pokropivny, Phys. Solid State 46 (2), 392 (2004).

    Article  ADS  Google Scholar 

  34. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46 (9), 3437 (1967).

    Article  ADS  Google Scholar 

  35. N. N. Matyushenko, V. E. Strel’nitskii, and V. A. Gusev, JETP Lett. 30 (4), 199 (1979).

    ADS  Google Scholar 

  36. H. Vora and T. J. Moravec, J. Appl. Phys. 52 (10), 6151 (1981).

    Article  ADS  Google Scholar 

  37. M. Frenklach, R. Kematick, D. Huang, W. Howard, K. E. Spear, A. W. Phelps, and R. Koba, J. Appl. Phys. 66 (1), 395 (1989).

    Article  ADS  Google Scholar 

  38. S. Bhargava, H. D. Bist, S. Sahli, M. Aslam, and H. B. Tripathi, Appl. Phys. Lett. 67 (12), 1706 (1995).

    Article  ADS  Google Scholar 

  39. A. K. Sharma, H. G. Salunke, G. P. Das, P. Ayyub, and M. S. Multani, J. Phys.: Condens. Matter 8 (31), 5801 (1996).

    ADS  Google Scholar 

  40. R. Kapil, B. R. Mehta, and V. D. Vankar, Appl. Phys. Lett. 68 (18), 2520 (1996).

    Article  ADS  Google Scholar 

  41. R. Kapil, B. R. Mehta, and V. D. Vankar, Thin Solid Films 312 (1), 106 (1998).

    Article  ADS  Google Scholar 

  42. Z. Wang, Y. Zhao, C.-S. Zha, Q. Xue, R. T. Downs, R.-G. Duan, R. Caracas, and X. Liao, Adv. Mater. (Weinheim) 20 (17), 3303 (2008).

    Article  Google Scholar 

  43. Y. G. Gogotsi, A. Kailer, and K. G. Nickel, J. Appl. Phys. 84 (3), 1299 (1998).

    Article  ADS  Google Scholar 

  44. Y. Lifshitz, X. F. Duan, N. G. Shang, Q. Li, L. Wan, I. Bello, and S. T. Lee, Nature (London) 412 (6845), 404 (2001).

    Article  ADS  Google Scholar 

  45. M. Miki-Yoshida, L. Rendon, and M. Jose-Yacaman, Carbon 31 (5), 843 (1993).

    Article  Google Scholar 

  46. V. N. Khabashesku, Z. Gu, B. Brinson, J. L. Zimmerman, J. L. Margrave, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, J. Phys. Chem. B 106 (43), 11155 (2002).

    Article  Google Scholar 

  47. K. Yamada, Carbon 41 (6), 1309 (2003).

    Article  Google Scholar 

  48. A. El Goresy, L. S. Dubrovinsky, P. Gillet, S. Mostefaoui, G. Graup, M. Drakopoulos, A. S. Simionovici, V. Swamy, and V. L. Masaitis, C. R. Geosci. 335 (12), 889 (2003).

  49. Z. W. Wang, Y. S. Zhao, K. Tait, X. Z. Liao, D. Schiferl, C. S. Zha, R. T. Downs, J. Qian, Y. T. Zhu, and T. D. Shen, Proc. Natl. Acad. Sci. USA 101 (38), 13699 (2004).

    Article  ADS  Google Scholar 

  50. P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, Nano Lett. 8 (8), 2570 (2008).

    Article  ADS  Google Scholar 

  51. Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102 (17), 175506 (2009).

    Article  ADS  Google Scholar 

  52. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (1), 205 (2015).

    Article  ADS  Google Scholar 

  53. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (6), 1253 (2015).

    Article  ADS  Google Scholar 

  54. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (11), 2331 (2015).

    Article  ADS  Google Scholar 

  55. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter 21 (39), 395502 (2009).

    Google Scholar 

  56. A. V. Arbuznikov, J. Struct. Chem. 48 (Suppl.), S1 (2007).

    Article  Google Scholar 

  57. V. A. Greshnyakov and E. A. Belenkov, Russ. Phys. J. 57 (6), 731 (2014).

    Article  Google Scholar 

  58. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Phys. Rev. Lett. 91 (1), 015502 (2003).

    Article  ADS  Google Scholar 

  59. C. Frondel and U. B. Marvin, Nature (London) 214 (5088), 587 (1967).

    Article  ADS  Google Scholar 

  60. R. H. Baughman and D. S. Galvao, Chem. Phys. Lett. 211 (1), 110 (1993).

    Article  ADS  Google Scholar 

  61. P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B: Condens. Matter 59 (2), 733 (1999).

    Article  ADS  Google Scholar 

  62. M. Hu, Z. Zhao, F. Tian, A. R. Oganov, Q. Wang, M. Xiong, C. Fan, B. Wen, J. He, D. Yu, H.-T. Wang, Bo Xu, and Y. Tian, Sci. Rep. 3, 1331 (2013).

    ADS  Google Scholar 

  63. Ch. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th revised ed. (Elsevier, Amsterdam, 2007).

    Google Scholar 

  64. R. Biswas, R. M. Martin, R. J. Needs, and O. N. Nielsen, Phys. Rev. B: Condens. Matter 30 (6), 3210 (1984).

    Article  ADS  Google Scholar 

  65. V. A. Greshnyakov, E. A. Belenkov, and V. M. Berezin, Crystal Structure and Properties of Carbon Diamond-Like Phases (South Ural State University, Chelyabinsk, 2012) [in Russian].

    Google Scholar 

  66. Q. Zhu, Q. Zeng, and A. R. Oganov, Phys. Rev. B: Condens. Matter 85 (20), 201407(R) (2012).

    Article  ADS  Google Scholar 

  67. K. S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F. J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O. M. Yaghi, Proc. Natl. Acad. Sci. USA 103 (27), 10186 (2006).

    Article  ADS  Google Scholar 

  68. E. A. Belenkov and V. A. Greshnyakov, J. Struct. Chem. 55 (3), 409 (2014).

    Article  Google Scholar 

  69. R. T. Strong, C. J. Pickard, V. Milman, G. Thimm, and B. Winkler, Phys. Rev. B: Condens. Matter 70 (4), 045101 (2004).

    Article  ADS  Google Scholar 

  70. J.-T. Wang, C. Chen, E. Wang, and Y. Kawazoe, Sci. Rep. 4, 4339 (2014).

    ADS  Google Scholar 

  71. E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119 (1), 101 (2014).

    Article  ADS  Google Scholar 

  72. H. S. Domingos, J. Phys.: Condens. Matter 16 (49), 9083 (2004).

    ADS  Google Scholar 

  73. C. J. Pickard and R. J. Needs, Phys. Rev. B: Condens. Matter 81 (1), 014106 (2010).

    Article  ADS  Google Scholar 

  74. Q. Zhu, A. R. Oganov, M. A. Salvado, P. Pertierra, and A. O. Lyakhov, Phys. Rev. B: Condens. Matter 83 (19), 193410 (2011).

    Article  ADS  Google Scholar 

  75. E. A. Belenkov and V. A. Greshnyakov, J. Mater. Sci. 50 (23), 7627 (2015).

    Article  ADS  Google Scholar 

  76. J. K. Burdett and S. Lee, J. Am. Chem. Soc. 107 (11), 3063 (1985).

    Article  Google Scholar 

  77. X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, and G. Su, Phys. Rev. Lett. 106 (15), 155703 (2011).

    Article  ADS  Google Scholar 

  78. F. J. Ribeiro, P. Tangney, S. G. Louie, and M. L. Cohen, Phys. Rev. B: Condens. Matter 74 (17), 172101 (2006).

    Article  ADS  Google Scholar 

  79. M. Hu, F. Tian, Z. Zhao, Q. Huang, B. Xu, L.-M.Wang, H.-T. Wang, Y. Tian, and J. He, J. Phys. Chem. C 116 (45), 24233 (2012).

    Article  Google Scholar 

  80. R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 19 (4–6), 447 (2001).

    Article  Google Scholar 

  81. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, Carbon 34 (2), 141 (1996).

    Article  Google Scholar 

  82. S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, Phys. Rev. Lett. 74 (20), 4015 (1995).

    Article  ADS  Google Scholar 

  83. Y. Liu, M. Lu, and M. Zhang, Phys. Lett. A 378 (45), 3326 (2014).

    Article  ADS  Google Scholar 

  84. Y. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Sci. Rep. 2, 520 (2012).

    ADS  Google Scholar 

  85. B. Wen, J. Zhao, M. J. Bucknum, P. Yao, and T. Li, Diamond Relat. Mater. 17 (3), 356 (2008).

    Article  ADS  Google Scholar 

  86. J. Zhai, D. Yu, K. Luo, Q. Wang, Z. Zhao, J. He, and Y. Tian, J. Phys.: Condens. Matter 24 (40), 405803 (2012).

    Google Scholar 

  87. E. A. Belenkov, E. N. Agalyamova, and V. A. Greshnyakov, Phys. Solid State 54 (2), 433 (2012).

    Article  ADS  Google Scholar 

  88. V. V. Pokropivny, A. S. Smolyar, and A. V. Pokropivny, Phys. Solid State 49 (3), 591 (2007).

    Article  ADS  Google Scholar 

  89. Y.-J. Wang and C.-Y. Wang, J. Appl. Phys. 106 (4), 043513 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Original Russian Text © E.A. Belenkov, V.A. Greshnyakov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 2069–2078.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkov, E.A., Greshnyakov, V.A. Structure, properties, and possible mechanisms of formation of diamond-like phases. Phys. Solid State 58, 2145–2154 (2016). https://doi.org/10.1134/S1063783416100073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100073

Navigation