Skip to main content
Log in

Charge distribution and mobility of lithium ions in Li2TiO3 from 6,7Li NMR data

  • Current NMR and EPR Spectroscopy Methods in Structural Chemistry of Complex Crystals, Glasses, Composites, and Biological Membranes
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A comparative analysis of 6,7Li NMR spectra is performed for the samples of monoclinic lithium titanate obtained at different synthesis temperatures. In the 7Li NMR spectra three lines are found, which differ in quadrupole splitting frequencies v Q and according to ab initio EFG calculations are assigned to three crystallographic sites of lithium: Li1 (v Q ∼ 27 kHz); Li2 (v Q ∼ 59 kHz); Li3 (v Q ∼ 6 kHz). The dynamics of lithium ions is studied in a wide temperature range from 300 K to 900 K. It is found that the narrowing of 7Li NMR spectra as a result of thermally activated diffusion of lithium ions in the low-temperature Li2TiO3 sample is observed at a higher temperature in comparison with a sample of high-temperature lithium titanate. Based on the analysis of 6Li NMR spectra it is assumed that there is mixed occupancy of lithium and titanium sites in the corresponding layers of the crystal structure of low-temperature lithium titanate, which hinders lithium ion transfer over regular crystallographic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mohapatraa, Y. P. Naik, V. Natarajan, et al., Physica B, 406, 1977 (2011).

    Article  Google Scholar 

  2. Th. Fehr and E. Schmidbauer, Solid State Ion., 178, 35 (2007).

    Article  CAS  Google Scholar 

  3. L. Zhang, X. Wang, H. Noguchi, et al., Electrochim. Acta, 49, 3305 (2004).

    Article  CAS  Google Scholar 

  4. C. Johnson, J.-S. Kim, A. J. Kropf, A. J. Kahaian, et al., J. Power Sources, 119–121, 139 (2003).

    Article  Google Scholar 

  5. V. Chauvaut and M. Cassir, J. Power Sources, 474, 9 (1999).

    CAS  Google Scholar 

  6. R. E. Avila, L. A. Peña, and J. C. Jiménez, J. Nucl. Mater., 405, 244 (2010).

    Article  CAS  Google Scholar 

  7. N. Roux, S. Tanaka, C. Johnson, and R. Verrall, Fusion Eng. Des., 41, 31 (1998).

    Article  CAS  Google Scholar 

  8. J. G. Van Der Laan, H. Kawamura, N. Roux, and D. Yamaki, J. Nucl. Mater., 283–287, 99 (2000).

    Article  Google Scholar 

  9. J. Dorrian and R. Newnham, Mater. Res. Bul., 4, 179 (1969).

    Article  CAS  Google Scholar 

  10. G. Izquierdo and A. West, Mater. Res. Bul., 15, 1655 (1980).

    Article  CAS  Google Scholar 

  11. J. Mikkelsen, J. Am. Ceram. Soc., 63, 331 (1980).

    Article  CAS  Google Scholar 

  12. I. R. Shein, T. A. Denisova, Ya. V. Baklanova, and A. L. Ivanovskii, J. Struct. Chem., 52, No. 6, 1043–1050 (2011).

    Article  CAS  Google Scholar 

  13. Y. Hosogi, H. Kato, and A. Kudo, J. Mater. Chem., 18, No. 6, 647 (2008).

    Article  CAS  Google Scholar 

  14. T. A. Denisova, Al’ternativnaya ènergetika i èkologiya, 3, 78 (2007).

    Google Scholar 

  15. T. A. Denisova, L. G. Maksimova, E. V. Polyakov, et al., Zh. Neorg. Khim., 51, No. 5, 757 (2006).

    CAS  Google Scholar 

  16. G. V. Lang, Z. Anorg. Allg. Chem., 348, 246 (1966).

    Article  CAS  Google Scholar 

  17. Trömel, M. Von, and J. Hauck, Z. Anorg. Allg. Chem., 373, 8 (1970).

    Article  Google Scholar 

  18. K. Takahashi, Y. Takahashi, N. Kijima, et al., Mater. Res. Bull., 44, 168 (2009).

    Article  Google Scholar 

  19. N. V. Tarakina, R. B. Neder, T. A. Denisova, et al., Dalton Trans., 39, 8168 (2010).

    Article  CAS  Google Scholar 

  20. N. V. Tarakina, T. A. Denisova, Y. V. Baklanova, et al., Adv. Sci. Technology, 63, 352 (2010).

    Article  CAS  Google Scholar 

  21. M. Vijayakumar, S. Kerisit, Z. Yang, et al., J. Phys. Chem C, 113, 20108 (2009).

    Article  CAS  Google Scholar 

  22. B. Ruprecht, M. Wilkening, R. Uecker, and P. Heitjans, Phys.Chem.Chem. Phys., 14, 11974 (2012).

    Article  CAS  Google Scholar 

  23. R. B. Creel, S. L. Segel, R. J. Schoenberger, R. G. Barnes, and D. R. Torgeson, J. Chem. Phys., 60, 2310 (1974).

    Article  CAS  Google Scholar 

  24. P. Blaha, K. Scwarz, and V. Luitz, Computer Code WIEN2k, Vienna University of Technology.

  25. A. Abraham, The Principles of Nuclear Magnetism, Oxford (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Baklanova.

Additional information

Original Russian Text Copyright © 2013 by Ya. V. Baklanova, I. Yu. Arapova, I. R. Shein, L. G. Maksimova, K. N. Mikhalev, T. A. Denisova

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 1, pp. S113–S120, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baklanova, Y.V., Arapova, I.Y., Shein, I.R. et al. Charge distribution and mobility of lithium ions in Li2TiO3 from 6,7Li NMR data. J Struct Chem 54 (Suppl 1), 111–118 (2013). https://doi.org/10.1134/S002247661307010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661307010X

Keywords

Navigation