Skip to main content
Log in

Aggregation modes of the spin mono-labeled tylopeptin B and heptaibin peptaibiotics in frozen solutions of weak polarity as studied by PELDOR spectroscopy

  • Current NMR and EPR Spectroscopy Methods in Structural Chemistry of Complex Crystals, Glasses, Composites, and Biological Membranes
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The X band PELDOR spectroscopy was used to investigate the magnetic dipole-dipole interactions in glassy solutions of nitroxide mono-labeled tylopeptin B and heptaibin peptaibiotics at 77 K. Specifically, a study was performed of the tylopeptin B peptides labeled at either position 3, 8, or 13, denoted as T3, T8, and T13, respectively. The heptaibin analogs labeled at either position 2 or 14, denoted as H2 and H14, respectively, were also investigated. It was shown that in frozen glassy peptide solutions in methanol, the spin labels are randomly distributed over the solvent volume. This result points to the absence of specific dipolar interactions between the peptides under these conditions. However, peptide aggregation was detected in weakly polar methanol/toluene environments. To study the properties of the resulting aggregates, we examined the depth of modulation for the PELDOR traces as a function of the concentration of the peptides in solution and the distances between the spin labels in the aggregates. Based on the concentration dependencies, the number of peptide molecules in the aggregates was estimated. We find that this value ranges from 2 to 3, depending on the position of the spin label in the peptide sequence. The combined analysis of the distance spectra and the number of peptide molecules in the aggregates allows us to suggest that dimer formation is the prevailing mode of self-association. In the case of spin-labeled tylopeptin B, the molecules in the dimer are head-to-head oriented. In addition, the distance spectra of the aggregates show that the C-termini of the molecules in the tylopeptin B dimer are more mobile than the Ntermini. This phenomenon leads to an increase in the spread of the distances between the nitroxides as the label position is approaching the peptide C-terminus. For heptaibin, we show that two forms of dimerization (head-to-head and head-to-tail) occur. Finally, in addition to dimers, aggregates containing 3 or 4 peptide molecules, which give broad lines in the distance spectra, are seen in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Tsvetkov, A. D. Milov, and A. G. Maryasov, Rus. Chem. Rev., 77, 487–520 (2008).

    Article  CAS  Google Scholar 

  2. A. D. Milov, R. I. Samoilova, Yu. D. Tsvetkov, F. Formaggio, C. Toniolo, and J. Raap, J. Am. Chem. Soc., 129, 9260/9261 (2007).

    Article  Google Scholar 

  3. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, S. Oancea, C. Toniolo, and J. Raap, Phys. Chem. Chem. Phys., 6, 3596–3603 (2004).

    Article  CAS  Google Scholar 

  4. A. D. Milov, R. I. Samoilova, Yu. D. Tsvetkov, M. Jost, C. Peggion, F. Formaggio, C. Toniolo, J.-W. Handgraaf, and J. Raap, Chem. Biodivers., 4, 1275–1298 (2007).

    Article  CAS  Google Scholar 

  5. C. Toniolo and H. Brückner, Peptaibiotics: Fungal Peptides Containing α-Dialkyl α-Amino Acids, Wiley-VCH, Weinheim, Germany (2009).

    Google Scholar 

  6. C. Peggion, F. Formaggio, M. Crisma, R. F. Epand, R. M. Epand, and C. Toniolo, J. Pept. Sci., 9, 679–689 (2003).

    Article  CAS  Google Scholar 

  7. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, and J. Raap, J. Am. Chem. Soc., 122, 3843–3848 (2000).

    Article  CAS  Google Scholar 

  8. A. D. Milov, Yu. D. Tsvetkov, and J. Raap, Appl. Magn. Res., 19, 215–226 (2000).

    Article  CAS  Google Scholar 

  9. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, and J. Raap, J. Am. Chem. Soc., 123, 3784–3789 (2001).

    Article  CAS  Google Scholar 

  10. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, G. L. Millhauser, and J. Raap, J. Phys. Chem. B, 105, 11206–11213 (2001).

    Article  CAS  Google Scholar 

  11. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, and J. Raap, J. Pept. Sci., 9, 690–700 (2003).

    Article  CAS  Google Scholar 

  12. A. D. Milov, Yu. D. Tsvetkov, E. Yu. Gorbunova, L. G. Mustaeva, T. V. Ovchinnikova, and J. Raap, Biopolymers, 64, 328–336 (2002).

    Article  CAS  Google Scholar 

  13. A. D. Milov, Yu. D. Tsvetkov, E. Yu. Gorbunova, L. G. Mustaeva, T. V. Ovchinnikova, J.-W. Handgraaf, and J. Raap, Chem. Biodivers, 4, 1243–1255 (2007).

    Article  CAS  Google Scholar 

  14. A. D. Milov, R. I. Samoilova, Yu. D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, and J. Raap, Dokl. Rus. Acad. Sci., 406, 341–345 (2006).

    Google Scholar 

  15. A. D. Milov, R. I. Samoilova, Yu. D. Tsvetkov, M. De Zotti, C. Toniolo, and J. Raap, J. Phys. Chem. B, 112, 13469–13472 (2008).

    Article  CAS  Google Scholar 

  16. M. Gobbo, C. Poloni, M. De Zotti, C. Peggion, B. Biondi, G. Ballano, F. Formaggio, and C. Toniolo, Chem. Biol. Drug Des., 75, 169–181 (2010).

    Article  CAS  Google Scholar 

  17. M. De Zotti, B. Biondi, C. Peggion, Y. Park, K.-S. Hahm, F. Formaggio, and C. Toniolo, J. Pept. Sci., 17, 585–594 (2011).

    Article  Google Scholar 

  18. C. Toniolo, M. Crisma, F. Formaggio, and C. Peggion, Biopolymers (Pept. Sci.), 60, 396–419 (2001).

    Article  CAS  Google Scholar 

  19. M. Gobbo, E. Merli, B. Biondi, S. Oancea, A. Toffoletti, F. Formaggio, and C. Toniolo, J. Pept. Sci., 18, 37–44 (2012).

    Article  CAS  Google Scholar 

  20. A. D. Milov, Yu. D. Tsvetkov, A. G. Maryasov, M. Gobbo, C. Prinzivalli, M. De Zotti, F. Formaggio, and C. Toniolo, Appl. Magn. Res., 44, 495–508 (2012).

    Article  Google Scholar 

  21. A. D. Milov, K. M. Salikhov, and M. D. Schirov, Fiz. Tverd. Tela. (Leningrad), 23, 975–982 (1981).

    CAS  Google Scholar 

  22. M. Pannier, S. Veit, A. Godt, G. Jeschke, and H. W. Spiess, J. Magn. Res., 142, 331–340 (2000).

    Article  CAS  Google Scholar 

  23. R. G. Larsen and D. J. Singel, J. Chem. Phys., 98, 5134–5146 (1993).

    Article  CAS  Google Scholar 

  24. A. Marko, D. Margraf, P. Cekan, S. T. Sigurdsson, O. Schiemann, and T. F. Prisner, Phys. Rev. E, 81, 021911 (2010).

    Article  Google Scholar 

  25. J. E. Lovett, A. M. Bowen, C. R. Timmel, M. W. Jones, J. R. Dilworth, D. Caprotti, S. G. Bell, L. L. Wong, and J. Harmer, Phys. Chem. Chem. Phys., 11, 6840–6848 (2009).

    Article  CAS  Google Scholar 

  26. A. Marko, D. Margraf, H. Yu, Y. Mu, G. Stock, and T. Prisner, J. Chem. Phys., 130, 064102 (2009).

    Article  CAS  Google Scholar 

  27. O. Schiemann, P. Cekan, D. Margraf, T. F. Prisner, and S. T. Sigurdsson, Angew. Chem. Int. Ed., 48, 3292–3295 (2009).

    Article  CAS  Google Scholar 

  28. B. Endeward, J. A. Butterwick, R. MacKinnon, and T. F. Prisner, J. Am. Chem. Soc., 131, 15246–15250 (2009).

    Article  CAS  Google Scholar 

  29. A. D. Milov, Yu. A. Grishin, S. A. Dzuba, and Yu. D. Tsvetkov, Appl. Magn. Res., 41, 59–67 (2011).

    Article  Google Scholar 

  30. A. D. Milov, A. G. Maryasov, and Yu. D. Tsvetkov, Appl. Magn. Res., 15, 107–143 (1998).

    Article  CAS  Google Scholar 

  31. Y. E. Kutsovsky, A. G. Mariasov, Y. I. Aristov, and V. N. Parmon, React. Kinet. Catal. Lett., 42, 19–24 (1990).

    Article  Google Scholar 

  32. G. Jeschke, A. Koch, H. Jones, and A. Godt, J. Magn. Res., 155, 72–82 (2002).

    Article  CAS  Google Scholar 

  33. A. Godt, M. Schulte, H. Zimmermann, and G. Jeschke, Angew. Chem. Int. Ed., 45, 7560–7564 (2006).

    Article  CAS  Google Scholar 

  34. G. Sicoli, G. Mathis, S. Aci-Seche, C. Saint-Pierre, Y. Boulard, D. Gasparutto, and S. Gambarelli, Nucl. Acids Res., 37, 3165–3176 (2009).

    Article  CAS  Google Scholar 

  35. B. D. Bode, D. Margraf, J. Plackmeyer, G. Dürner, T. F. Prisner, and O. Schiemann, J. Am. Chem. Soc., 129, 6736–6744 (2007).

    Article  CAS  Google Scholar 

  36. G. Jeschke, M. Sajid, M. Schulte, and A. Godt, Phys. Chem. Chem. Phys., 11, 6580–6591 (2009).

    Article  CAS  Google Scholar 

  37. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagoda, Numerical Methods for the Solution of Ill Posed Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands (1995).

    Book  Google Scholar 

  38. Y. W. Chiang, P. P. Borbat, and J. H. Freed, J. Magn. Res., 172, 279–295 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Tsvetkov.

Additional information

Original Russian Text Copyright © 2013 by A. D. Milov, Y. D. Tsvetkov, M. De Zotti, C. Prinzivalli, B. Biondi, F. Formaggio, C. Toniolo, M. Gobbo

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 1, pp. S76–S87, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milov, A.D., Tsvetkov, Y.D., De Zotti, M. et al. Aggregation modes of the spin mono-labeled tylopeptin B and heptaibin peptaibiotics in frozen solutions of weak polarity as studied by PELDOR spectroscopy. J Struct Chem 54 (Suppl 1), 73–85 (2013). https://doi.org/10.1134/S0022476613070056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613070056

Keywords

Navigation