Skip to main content
Log in

Non-conservation of activation energy barriers in the same chemical process: a cooperative (effect) proton transfer on (HF)n molecular aggregates

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The formation of (HF)n aggregates with n = 2, 3, 4, 5 and 6 and concerted proton transfer processes in these aggregates were systematically analyzed. It was verified that, by a cooperative effect, the barrier associated with the proton transfer process decreases for aggregates with a larger number of molecules, indicating that the activation energy for proton transfer depends on the molecularity of the process. Natural bond orbital and quantum theory of atoms in molecules were used to characterize the strength of the hydrogen bonds established in the aggregates, which verified a general increase in the delocalization energy as a function of increasing aggregate size. A deformed Eyring (d-Eyring) equation was used to calculate the proton transfer rate constants, where the d-Eyring equation adequately described the proton transfer kinetics. Analysis of the rate constants showed that proton transfer became faster as the cluster size increased. Arrhenius and d-Arrhenius plots showed a decrease in the dependence of the rate constants on temperature, particularly for the tetramer, pentamer, and hexamer. The d-Arrhenius plots, for which the d parameter was included in the Eyring equation, suggest non-Arrhenius behavior for proton transfer in the HF aggregates at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atoji M, Lipscomb WN (1954) The crystal structure of hydrogen fluoride. Acta Crystallogr 7:173–175

    Article  CAS  Google Scholar 

  2. Hunt SW, Higgins KJ, Craddock MB et al (2003) Influence of a polar near-neighbor on incipient proton transfer in a strongly hydrogen bonded complex. J Am Chem Soc 125:13850–13860. https://doi.org/10.1021/ja030435x

    Article  CAS  PubMed  Google Scholar 

  3. Kuśmierczuk W, Witkowski A (1981) Infrared spectra of hydrogen-bonded hydrogen halides. Chem Phys Lett 81:558–559. https://doi.org/10.1016/0009-2614(81)80462-9

    Article  Google Scholar 

  4. Loerting T, Liedl KR, Rode BM (1998) Large curvature tunneling effects reveal concerted hydrogen exchange rates in cyclic hydrogen fluoride clusters comparable to carboxylic acid dimers. J Am Chem Soc 120:404–412. https://doi.org/10.1021/ja972799t

    Article  CAS  Google Scholar 

  5. Quack M, Schmitt U, Suhm MA (1997) FTIR spectroscopy of hydrogen fluoride clusters in synchronously pulsed supersonic jets Isotopic isolation, substitution and 3-d condensation. Chem Phys Lett 269:29–38. https://doi.org/10.1016/S0009-2614(97)00203-0

    Article  CAS  Google Scholar 

  6. Roohi H, Taghezadeh R (2011) Intra-cluster proton transfer in anilide–(HF)n (n = 1–4): Can the size of HF cluster influence the N − ···H–F → N–H···F − switching. J Fluor Chem 132:459–467. https://doi.org/10.1016/j.jfluchem.2011.04.018

    Article  CAS  Google Scholar 

  7. de Giambiagi MS, de Neto MO, de Neder AVF (2005) Cooperative effect of CH···O bonds in models for biological systems. J Math Chem 38:519–532. https://doi.org/10.1007/s10910-005-6905-3

    Article  CAS  Google Scholar 

  8. Io A, Kawatsu T, Tachikawa M (2019) Quantum stabilization of the frustrated hydrogen bonding structure in the hydrogen fluoride trimer. J Phys Chem A 123:7950–7955. https://doi.org/10.1021/acs.jpca.9b04407

    Article  CAS  PubMed  Google Scholar 

  9. Quack M, Schmitt U, Suhm MA (1993) Evidence for the (HF) 5 complex in the HF stretching FTIR absorption spectra of pulsed and continuous supersonic jet expansions of hydrogen fluoride. Chem Phys Lett 208:446–452. https://doi.org/10.1016/0009-2614(93)87171-X

    Article  CAS  Google Scholar 

  10. Morais SF de A, Mundim KC, Ferreira DAC (2015) An alternative interpretation of the ultracold methylhydroxycarbene rearrangement mechanism: cooperative effects. Phys Chem Chem Phys 17:7443–7448. https://doi.org/10.1039/C4CP05842A

  11. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  12. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289. https://doi.org/10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  13. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  14. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065. https://doi.org/10.1039/B515623H

    Article  CAS  PubMed  Google Scholar 

  15. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  16. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  17. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  18. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  19. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  20. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  21. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  22. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  23. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  24. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision B.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT

  26. Keith TA (2017) AIMAll (Version 16.05.18)

  27. Andrienko GA (2015) Chemcraft—graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

  28. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77. https://doi.org/10.1021/cr60056a006

    Article  CAS  Google Scholar 

  29. Silva VHC, Aquilanti V, de Oliveira HCB, Mundim KC (2013) Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem Phys Lett 590:201–207. https://doi.org/10.1016/j.cplett.2013.10.051

    Article  CAS  Google Scholar 

  30. Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487. https://doi.org/10.1007/BF01016429

    Article  Google Scholar 

  31. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Phys Chemie 4U:226–248. https://doi.org/10.1515/zpch-1889-0416

    Article  Google Scholar 

  32. Mulyava MT, Shevchuk VU (1967) Calculation of pre-exponential factors for radical substitution reactions on the basis of the additivity principle. Theor Exp Chem 1:482–485. https://doi.org/10.1007/BF00524032

    Article  Google Scholar 

  33. Aquilanti V, Mundim KC, Elango M et al (2010) Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498:209–213. https://doi.org/10.1016/j.cplett.2010.08.035

    Article  CAS  Google Scholar 

  34. Aquilanti V, Borges EP, Coutinho ND et al (2018) From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. Rend Lincei Sci Fis e Nat 29:787–802. https://doi.org/10.1007/s12210-018-0749-9

    Article  Google Scholar 

  35. Contributors W Aquilanti–Mundim deformed Arrhenius model. In: Wikipedia, Free Encycl

  36. Redington RL (1982) Nonideal-associated vapor analysis of hydrogen fluoride. J Phys Chem 86:552–560. https://doi.org/10.1021/j100393a027

    Article  CAS  Google Scholar 

  37. Meier BH, Graf F, Ernst RR (1982) Structure and dynamics of intramolecular hydrogen bonds in carboxylic acid dimers: a solid state NMR study. J Chem Phys 76:767–774. https://doi.org/10.1063/1.443045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grants from the following Brazilian Institutions: CAPES, CNPQ, and UnB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara. F. de A. Morais or Daví A. C. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Festschrift in honor of Prof. Fernando R. Ornellas" Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A. Morais, S.F., Mundim, K.C. & Ferreira, D.A.C. Non-conservation of activation energy barriers in the same chemical process: a cooperative (effect) proton transfer on (HF)n molecular aggregates. Theor Chem Acc 139, 164 (2020). https://doi.org/10.1007/s00214-020-02681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02681-1

Keywords

Navigation