Skip to main content
Log in

Theoretical study of hydrophobicity and hydrophilicity of indole, skatole, and ethanole

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures of indole, skatole, and ethanole complexes with water molecules are calculated by the DFT method. Radial and angular dependences of hydrogen bridge parameters on the number of water molecules are analyzed. Two models are determined which enable the study of the reason for the hydrophobicity of indole and skatole. Frequencies and intensities of absorption bands corresponding to stretching vibrations of the NH bond of indole, skatole, and ethanol in complexes with water are compared. It is shown that the main reason for the domination of the hydrophobic component over the hydrophilic one is the taking into account of the interaction of water molecules with the aromatic system of indole and skatole, finally resulting in a substantial decrease in the HB strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Vol’kenshtein, Biophysics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  2. S. I. Aksenov, Water and its Role in the Regulation of Biological Processes [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  3. T. Yu. Dyankova and V. F. Gromov, Vestnik SPGUTD, No. 3, 110–115 (1999).

    Google Scholar 

  4. E. V. Korchagina and O. E. Philippova, Nanogels of Chitosan and of Its Hydrophobic Derivatives in Dilute Aqueous Solutions, Abstr. of V Internat. Symp. Supramolecular Systems in Chemistry and Biology, Kyiv, Ukraine, May 12–16 (2009), p. 127.

    Google Scholar 

  5. G. N. Chuev and V. F. Sokolov, Biofizika, 51, No. 3, 402–408 (2006).

    CAS  Google Scholar 

  6. A. M. Pron’kin, M. G. Kiselev, and Yu. A. Kalinnikov, Anthraquinone Hydration According to Molecular Dynamic Data, www.textilclub.ru/index.php?option...32

  7. A. T. Lukashenko, O. S. Knyazeva, I. B. Kovalenko, A. M. Abaturova, and E. A. Grachev, Modeling of Hydrophobic Interactions in Biological Systems [in Russian], Proc. of the 16th Intern. Conf., Mathematics. Computers. Education (2009).

    Google Scholar 

  8. Yu. Ya. Efimov, J. Struct. Chem., 50, No. 4, 702–711 (2009).

    Article  CAS  Google Scholar 

  9. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Gaussian Inc., Pittsburgh PA (2009).

    Google Scholar 

  10. G. M. Jensen, D. B. Goodin, and S. W. Bunte, J. Phys. Chem., 100, 954–959 (1996).

    Article  CAS  Google Scholar 

  11. G. N. Ten., A. A. Yakovleva, T. G. Burova, V. I. Berezin, and V. I. Baranov, Zh. Prikl. Spektr., 77, 542–549 (2010).

    Google Scholar 

  12. K. B. Berezin, V. I. Berezin, N. A. Kirnosov, and M. K. Berezin, Problems of Optical Physics and Biophotonics [in Russian], Izd. Novyi Veter, Saratov (2009), pp. 181–188.

    Google Scholar 

  13. M. Matsuno and H. Takeuchi, Bull. Chem. Soc. Jpn., 71, 851–859 (1998)

    Article  CAS  Google Scholar 

  14. Yu. Ya. Efimov, J. Struct. Chem., 49, No. 2, 261–269 (2008).

    Article  CAS  Google Scholar 

  15. G. G. Malenkov, J. Struct. Chem., 47,Suppl, S1–S31 (2006).

    Article  CAS  Google Scholar 

  16. Yu. Ya. Efimov and Yu. I. Naberukhin, Mol. Phys., 101, 459–468 (2003).

    Article  CAS  Google Scholar 

  17. Yu. Ya. Efimov and Yu. I. Naberukhin, Mol. Phys., 102, 1407–1414 (2004).

    Article  CAS  Google Scholar 

  18. Yu. Ya. Efimov and Yu. I. Naberukhin, Spectrochim. Acta A, 61, No. 8, 1789–1794 (2005).

    Article  Google Scholar 

  19. G. E. Bordina, G. M. Zubareva, I. A. Roshchina, and G. P. Shmatov, An IR Spectroscopic Study of the Effect of Super Low Amounts of Ethanol on Aqueous Systems, irikar.narod.ru/articles/refer-book/a14.htm

  20. N. Hontama, Y. Inokuchi, T. Ebata, C. Dedonder-Lardeux, C. Jouvet, and S. S. Xantheas, J. Phys. Chem., 114A, 2967–2972 (2010).

    Article  Google Scholar 

  21. V. Yu. Rudyak, V. G. Avakyan, V. B. Nazarov, and M. V. Alfimov, Ross. Nanotekhn., 4, 81–91 (2009).

    Google Scholar 

  22. A. V. Kim, N. N. Medvedev, and A. Gaiger, Electr. J. “Structure and Dynamics of Molecular Systems,” No. 10A, 36–42 (2011).

    Google Scholar 

  23. D. Sivanesan, L. Sumathi, and W. J. Welsh, Chem. Phys. Lett., 367, 351–360 (2003).

    Article  CAS  Google Scholar 

  24. Y. Katrib, Ph. Mirabel, S. Le Calvé, G. Weck, and E. Kochanski, J. Phys. Chem., 106B, 7237–7245 (2002).

    Google Scholar 

  25. A. Drobyshev and A. Aldiyarov, Fiz. Nizkikh Temperatur, 37, 903–911 (2011).

    Google Scholar 

  26. A. V. Kargovskii, Izv. Vysch. Uchebn. Zaved., Prikl. Nelineinaya Dinamika, 14, No. 5, 122–131 (2006).

    Google Scholar 

  27. I. V. Kolesnik and N. A. Sapoletova, Infrared Spectroscopy [in Russian], MGU, Moscow (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ten.

Additional information

Original Russian Text © 2013 G. N. Ten, A. A. Yakovleva, V. I. Baranov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, No. 6, pp. 986–996, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ten, G.N., Yakovleva, A.A. & Baranov, V.I. Theoretical study of hydrophobicity and hydrophilicity of indole, skatole, and ethanole. J Struct Chem 54, 1018–1028 (2013). https://doi.org/10.1134/S0022476613060048

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613060048

Keywords

Navigation