Skip to main content
Log in

Effect of the hydrogen bridge geometry on the vibrational spectra of water: Two-parameter H-bonding potentials

  • Proceedings of the XIV Seminar on Intermolecular Interactions and Molecule Conformations
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A principle to design the multi-parameter potentials of hydrogen bonding is proposed and developed. Based on fluctuation theory, they provide the description of temperature evolution of the shape of OH vibrational spectra of liquid water molecules. Approximate solutions expressing the νOH frequency and hydrogen bond energy E through the hydrogen bond length and bending (R O...O, φH-O...O) and the pair of angles (φH-O...O, χ-O...O) adjacent to it are found numerically. By their means, spectra are calculated fairly close to experiment in a temperature range up to 200°C. The expressions proposed can be used to quantitatively analyze the networks of hydrogen bonds in computer models of water obtained by Monte-Carlo or molecular dynamics methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Malenkov, J. Struct. Chem., 47,Suppl., S1–S31 (2006).

    Article  CAS  Google Scholar 

  2. Yu. Ya. Efimov and Yu. I. Naberukhin, Mol. Phys., 101, 459–468 (2003).

    Article  CAS  Google Scholar 

  3. Yu. Ya. Efimov and Yu. I. Naberukhin, J. Struct. Chem., 41, No. 3, 433–439 (2000).

    Article  CAS  Google Scholar 

  4. Yu. Ya. Efimov, ibid., 49, No. 2, 261–269 (2008).

    Article  CAS  Google Scholar 

  5. Yu. Ya. Efimov and Yu. I. Naberukhin, Farad. Discuss. Chem. Soc., 85, 117–123 (1988).

    Article  CAS  Google Scholar 

  6. J. D. Smith, Ch. D. Cappa, K. R. Wilson, et al., Proc. Natl. Acad. Sci. USA, 102, 14171–14174 (2005).

    Article  CAS  Google Scholar 

  7. A. P. Zhukovskii, Zh. Strukt. Khim., 17, 931/932 (1976).

    Google Scholar 

  8. T. T. Wall and D. F. Hornig, J. Chem. Phys., 43, 2079–2087 (1965).

    Article  CAS  Google Scholar 

  9. H. Torii, J. Phys. Chem. A, 110, 9469–9477 (2006).

    Article  CAS  Google Scholar 

  10. C. P. Lawrence and J. L. Skinner, J. Chem. Phys., 118, No. 1, 264–272 (2003).

    Article  CAS  Google Scholar 

  11. J. A. Pople, Proc. Roy. Soc., A205, 163–178 (1951).

    Google Scholar 

  12. A. P. Zhukovskii, L. V. Shurupova, and A. M. Zhukovskii, J. Struct. Chem., 36, No. 3, 426–431 (1995).

    Article  Google Scholar 

  13. Yu. Ya. Efimov, ibid., 32, No. 6, 834–841 (1991).

    Article  Google Scholar 

  14. M. Falk, Chemistry and Physics of Aqueous Gas Solutions, W. B. Adams et. al. (eds.), Electrochem. Soc. Inc., Princeton (1975), pp. 19–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Efimov.

Additional information

Original Russian Text Copyright © 2009 by Yu. Ya. Efimov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 4, pp. 729–738, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimov, Y.Y. Effect of the hydrogen bridge geometry on the vibrational spectra of water: Two-parameter H-bonding potentials. J Struct Chem 50, 702–711 (2009). https://doi.org/10.1007/s10947-009-0108-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0108-x

Keywords

Navigation