Skip to main content
Log in

Volumetric properties, structural effects, and hydration of amino acids in aqueous salt solutions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The dependence of the standard partial volumes of glycine, α-alanine, and serine on the ionic strength of aqueous sodium chloride and sulfate solutions is modeled by the extended Masson equation: {ie534-1}. The error of less than 0.2 cm3/mol is a result of using five values of the A and B parameters: the two values of A are determined by the type of salt and the three values of B by the type of amino acid. A new variation of the additive-group approach is proposed for {ie534-2}. The partial volumes of the CH3 group (α-alanine) and the CH2 group (serine) are found not to depend on the salt concentration. The partial volume of the CH2 group of glycine grows with concentration. The structural characteristics of the hydrated complexes of the NH +3 and COO groups are calculated: the hydration numbers, the molar volumes of water inside and outside the hydration sphere, and the intrinsic volume of NH +3 in COO in solution. Given the same ionic strength, the aqueous sodium sulfate solution produces a somewhat stronger dehydration of the charged groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Yuan, Z.-F. Li, and B.-H. Wang, J. Chem. Thermodyn., 38, 20–33 (2006).

    Article  CAS  Google Scholar 

  2. S. K. Singh and N. Kishore, J. Sol. Chem., 32, 117–135 (2003).

    Article  CAS  Google Scholar 

  3. Y. Marcus, J. Sol. Chem., 23, 831–848 (1994).

    Article  CAS  Google Scholar 

  4. J. V. Leyendekkers, J. Chem. Faraday Trans. I, 79, 1123–1134 (1983).

    Article  CAS  Google Scholar 

  5. M. N. Islam and R. K. Wadi, J. Bangladesh Chem. Soc., 7, 206–211 (1994).

    CAS  Google Scholar 

  6. R. K. Wadi and P. Ramasami, J. Chem. Faraday Trans., 93, 243–247 (1997).

    Article  CAS  Google Scholar 

  7. M. Ide, Y. Maeda, and H. Kitano, J. Phys. Chem. B, 101, 7022–7026 (1997).

    Article  CAS  Google Scholar 

  8. V. P. Korolev, J. Struct. Chem., 51, 491–499 (2010).

    Article  CAS  Google Scholar 

  9. R. S. Humphrey, G. R. Hedwig, I. D. Watson, and G. N. Malcolm, J. Chem. Thermodyn., 12, 595–603 (1980).

    Article  CAS  Google Scholar 

  10. Z. Yan, J. Wang, W. Liu, and J. Lu, Thermochim. Acta, 334, 17–27 (1999).

    Article  CAS  Google Scholar 

  11. T. Ogawa, K. Mizutani, and M. Yasuda, Bull.Chem. Soc. Jpn., 57, 2064–2068 (1984).

    Article  CAS  Google Scholar 

  12. C. Liu and C. Ren, J. Chem. Eng. Data, 54, 3296–3299 (2009).

    Article  CAS  Google Scholar 

  13. Gy. Jákli, J. Chem. Thermodyn., 39, 1589–1600 (2007).

    Article  Google Scholar 

  14. C. M. Romero and J. C. Cadena, J. Sol. Chem., 39, 1474–1483 (2010).

    Article  CAS  Google Scholar 

  15. A. V. Hakin and J. L. Liu, J. Sol. Chem., 35, 1157–1171 (2006).

    Article  CAS  Google Scholar 

  16. J. E. Desnoyers, M. Arel, G. Perron, and C. Jolicoeur, J. Phys. Chem., 73, 3346–3351 (1969).

    Article  CAS  Google Scholar 

  17. G. Perron, N. Desrosiers, and J. E. Desnoyers, Canad. J. Chem., 54, 2163–2183 (1976).

    Article  CAS  Google Scholar 

  18. A. K. Mishra, K. P. Prasad, and J. C. Ahluwalia, Biopolymers, 22, 2397–2409 (1983).

    Article  CAS  Google Scholar 

  19. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem., 88, 86–92 (1984).

    Article  CAS  Google Scholar 

  20. V. P. Korolev, J. Struct. Chem., 52, 737–742 (2011).

    Article  CAS  Google Scholar 

  21. V. P. Korolev and A. L. Serebryakova, J. Struct. Chem., 52, 1106–1110 (2011).

    Article  CAS  Google Scholar 

  22. L. Lepori and P. Gianni, J. Sol. Chem., 29, 405–447 (2000).

    Article  CAS  Google Scholar 

  23. A. Lo Surdo, E. M. Alzola, and F. J. Millero, J. Chem. Thermodyn., 14, 649–662 (1982).

    Article  Google Scholar 

  24. J. C. Hindman, J. Chem. Phys., 36, 1000–1015 (1962).

    Article  CAS  Google Scholar 

  25. J. V. Leyendekkers, J. Phys. Chem., 90, 5449–5455 (1986).

    Article  CAS  Google Scholar 

  26. A. Zavitsas, J. Phys. Chem. B, 105, 7805–7817 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Korolev.

Additional information

Original Russian Text Copyright © 2013 by V. P. Korolev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, No. 3, pp. 482–487, May–June, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, V.P. Volumetric properties, structural effects, and hydration of amino acids in aqueous salt solutions. J Struct Chem 54, 534–540 (2013). https://doi.org/10.1134/S0022476613030098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613030098

Keywords

Navigation