Skip to main content
Log in

DFT study on the structure and detonation properties of amino, methyl, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides: New high energy materials

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure, band gap, thermodynamic properties and detonation properties of methyl, amino, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides are explored using density functional theory at the B3LYP/aug-cc-pVDZ level. It is found that the NH2 or CH3 group substitution for the acidic proton at the N4 position of trinitropyrazole-2-oxide (P20) decreases the heat of detonation and crystal density. The density (2.20–2.50 g/cm3), detonation velocity (10.20–10.92 km/s), and detonation pressure (52.30–59.84 GPa) of the title compounds are higher compared with 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and octanitrocubane (ONC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Zaitsev, I. L. Dalinger, and S. A. Shevelev, Russ. Chem. Rev., 78, 589–627 (2009).

    Article  CAS  Google Scholar 

  2. J. W. A. M. Janssen, H. J. Koeners, C. G. Kruse, and C. L. Habraken, J. Org. Chem., 38, 1777–1782 (1973).

    Article  CAS  Google Scholar 

  3. G. Herve, C. Roussel, and H. Graindorg, Angew Chem. Int. Ed., 49, 3177–3181 (2010).

    Article  CAS  Google Scholar 

  4. I. L. Dalinger, T. I. Cherkasova, G. P. Popova, T. K. Shkineva, I. A. Vatsadze, S. A. Shevelev, and M. I. Kanishchev, Russ. Chem. Bull. Int. Ed., 58, 410–413 (2009).

    Article  CAS  Google Scholar 

  5. I. L. Dalinger, G. P. Popova, I. A. Vatsadze, T. K. Shkineva, and S. A. Shevelev, Russ. Chem. Bull. Int. Ed., 58, 2185 (2009).

    Article  CAS  Google Scholar 

  6. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Mendeleev Commun., 20, 253/254 (2000).

    Google Scholar 

  7. A. A. Pinkerton, E. A. Zhuorva, and Y.-S Chen, in: Energetic Materials, Theoretical and Computational Chemistry Series, P. Politzer and J. S. Murray (eds.), Elsevier, New York (2003).

    Google Scholar 

  8. J. S. Murray, M. C. Concha, and P. Politzer, Mol. Phys., 107, 89–97 (2009).

    Article  CAS  Google Scholar 

  9. B. M. Rice and J. J. Hare, J. Phys. Chem. A, 106, 1770–1783 (2002).

    Article  CAS  Google Scholar 

  10. M. Pospìŝil, P. Vávra, M. C. Concha, J. S. Murray, and P. Politzer, J. Mol. Model., 16, 895–901 (2010).

    Article  Google Scholar 

  11. C. Zhang, Y. Shu, Y. Huang, X. Zhao, and H. Dong, J. Phys. Chem. B, 109, 8978–8982 (2005).

    Article  CAS  Google Scholar 

  12. C. Zhang, J. Hazard. Mater., 161, 21–28 (2009).

    Article  CAS  Google Scholar 

  13. S. Zeman, J. Energetic. Mater., 17, 305–329 (1999).

    Article  CAS  Google Scholar 

  14. S. Zeman, J. Hazard. Mater., 132, 155–164 (2006).

    Article  CAS  Google Scholar 

  15. C. Zhi and X. Cheng, Propellants Explos, Pyretech., 35, 555–560 (2010).

    Article  CAS  Google Scholar 

  16. G. Wang, H. Xiao, X. Ju, and X. Gong, Propellants Explos., Pyretech., 2, 102–109 (2006).

    Article  Google Scholar 

  17. F. Fukui, T. Yonezawa, and H. Shingu, J. Chem. Phys., 20, 722–725 (1952).

    Article  CAS  Google Scholar 

  18. M. J. Frisch et al., Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA (2003).

    Google Scholar 

  19. Materials Studio, Version 4.1, Accelrys Inc., San Diego, CA (2004).

  20. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys., 48, 23–25 (1968).

    Article  CAS  Google Scholar 

  21. J. Akhavan, Chemistry of Explosives, The Royal Society of Chemistry, Cambridge (1998).

    Google Scholar 

  22. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond, Oxford University Press, New York (1999).

    Google Scholar 

  23. J. K. Kim, S. G. Cho, C. K. Kim, H.-Y. Park, H. Zhang, and H. W. Lee, J. Compu. Chem., 29, 1818–1824 (2008).

    Article  CAS  Google Scholar 

  24. P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and T.-B. Alejandro, Mol. Phys., 107, 2095–2101 (2009).

    Article  CAS  Google Scholar 

  25. P. F. Pagoria, J. S. Lee, A. R. Mitchell, and R. D. Schmidt, Thermochim. Acta, 384, 187–204 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Additional information

Original Russian Text Copyright © 2012 by P. Ravi, G. M. Gore, A. K. Sikder, S. P. Tewari

__________

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 4, pp. 687–695, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Gore, G.M., Sikder, A.K. et al. DFT study on the structure and detonation properties of amino, methyl, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides: New high energy materials. J Struct Chem 53, 676–684 (2012). https://doi.org/10.1134/S0022476612040099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612040099

Keywords

Navigation