Skip to main content
Log in

DFT characterization of 1-acetylpiperazinyl-dithiocarbamate ligand and its transition metal complexes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Employing DFT and handling the solvent effects with the PCM model, the 1-acetylpiperazinyldithiocarbamate acpdtc ligand and its M(acpdtc)2 complexes, where M is Mn(II), Fe(II), Co(II), Ni(II) and Cu(II), are characterized computationally. The obtained results suggest that the piperazine ring adopts chair conformation in all the studied species. In the gas and solution phases, the chair form of the ligand is dominant. For the Mn, Fe and Co complexes the tetrahedral structure is more stable than the square form in the gas and solution phases. However, the Ni and Cu complexes adopt the square form, in which the complex has the inversion center. The calculated vibrational frequencies are in agreement with the experimental ones, confirming the suitability of the optimized geometries of the compounds. Atomic charges, electron distribution of the frontier orbitals, and stabilizing electron transfers are determined by the NBO analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Maccà, A. Trevisan, and D. Fregona, J. Med. Chem., 49, No. 5, 1648–1657 (2006).

    Article  CAS  Google Scholar 

  2. L. Ronconi, L. Giovagnini, C. Marzano, F. Bettìo, R. Graziani, G. Pilloni, and D. Fregona, Inorg. Chem., 44, No. 6, 1867–1881 (2005).

    Article  CAS  Google Scholar 

  3. L. W. Mire and D. S. Marynick, Inorg. Chem., 39, No. 26, 5970–5975 (2000).

    Article  CAS  Google Scholar 

  4. J. D. E. T. Wilton-Ely, D. Solanki, E. R. Knight, K. B. Holt, A. L. Thompson, and G. Hogarth, Inorg. Chem., 47, No. 20, 9642–9653 (2008).

    Article  CAS  Google Scholar 

  5. L. N. Mazalov, N. V. Bausk, S. B. Érenburg, and S. V. Larionov, J. Struct. Chem., 42, No. 5, 784–793 (2001).

    Article  CAS  Google Scholar 

  6. A. Mohammad, C. Varshney, and S. A. A. Nami, Spectrochim. Acta Part A, 73, No. 1, 20–24 (2009).

    Article  Google Scholar 

  7. R. H. Sohn, C. B. Deming, D. C. Johns, H. C. Champion, C. Bian, K. Gardner, and J. J. Rade, Blood, 105, No. 10, 3910–3917 (2005).

    Article  CAS  Google Scholar 

  8. D. Lu, J. Nadas, G. Zhang, W. Johnson, J. L. Zweier, A. J. Cardounel, F. A. Villamena, and P. G. Wang, J. Am. Chem. Soc., 129, No. 17, 5503–5514 (2007).

    Article  CAS  Google Scholar 

  9. C. Bolzati, M. Cavazza-Ceccato, S. Agostini, F. Refosco, Y. Yamamichi, S. Tokunaga, D. Carta, N. Salvarese, D. Bernardini, and G. Bandoli, Bioconjugate Chem., 21, No. 5, 928–939 (2010).

    Article  CAS  Google Scholar 

  10. J. M. Lang, J. L. Touraine, C. Trepo, P. Choutet, M. Kirstetter, A. Falkenrodt, L. Herviou, J. M. Livrozet, G. Retornaz, and F. Touraine, Lancet, 2, No. 8613, 702–706 (1988).

    Article  CAS  Google Scholar 

  11. M. S. C. Pedras, Chem. Rec., 8, No. 2, 109–115 (2008).

    Article  CAS  Google Scholar 

  12. O. M. Viquez, H. L. Valentine, D. B. Friedman, S. J. Olson, and W. M. Valentine, Chem. Res. Toxicol., 20, No. 3, 370–379 (2007).

    Article  CAS  Google Scholar 

  13. Z. Li and D. S. Kosov, J. Phys. Chem. B, 110, No. 20, 9893–9898 (2006).

    Article  CAS  Google Scholar 

  14. J. Das, P. Chen, D. Norris, R. Padmanabha, J. Lin, R. V. Moquin, Z. Shen, L. S. Cook, A. M. Doweyko, S. Pitt, S. Pang, D. R. Shen, Q. Fang, H. F. de Fex, K. W. McIntyre, D. J. Shuster, K. M. Gillooly, K. Behnia, G. L. Schieven, J. Wityak, and J. C. Barrish, J. Med. Chem., 49, No. 23, 6819–6832 (2006).

    Article  CAS  Google Scholar 

  15. S. H. Ferreira, B. B. Lorenzetti, M. Devissaguet, D. Lesiuer, and Y. Tsouderos, Br. J. Pharmacol., 114, No. 2, 303–308 (1995).

    Article  CAS  Google Scholar 

  16. A. K. Jain, V. V. Reddy, A. Paul, K. Muniyappa, and S. Bhattacharya, Biochemistry, 48, No. 45, 10693–10704 (2009).

    Article  CAS  Google Scholar 

  17. C. Kaiser, V. H. Audia, J. P. Carter, D. W. McPherson, P. P. Waid, V. C. Lowe, and L. Noronha-Blob, J. Med. Chem., 36, No. 5, 610–616 (1993).

    Article  CAS  Google Scholar 

  18. C. B. Ziegler, P. Bitha, N. A. Kuck, T. J. Fenton, P. J. Petersen, and Y. Lin, J. Med. Chem., 33, No. 1, 142–146 (1990).

    Article  CAS  Google Scholar 

  19. R. N. Schut, F. E. Ward, and R. Rodriguez, J. Med. Chem., 15, No. 3, 301–304 (1972).

    Article  CAS  Google Scholar 

  20. J. Cao, S. S. Kulkarni, S. M. Husbands, W. D. Bowen, W. Williams, T. Kopajtic, J. L. Katz, C. George, and A. H. Newman, J. Med. Chem., 46, No. 13, 2589–2598 (2003).

    Article  CAS  Google Scholar 

  21. T. Chattopadhyay, M. Mukherjee, A. Mondal, P. Maiti, A. Banerjee, K. S. Banu, S. Bhattacharya, B. Roy, D. J. Chattopadhyay, T. K. Mondal, M. Nethaji, E. Zangrando, and D. Das, Inorg. Chem., 49, No. 7, 3121–3129 (2010).

    Article  CAS  Google Scholar 

  22. F. D. Proft and P. Geerlings, Chem. Rev., 101, 1451–1464 (2001).

    Article  Google Scholar 

  23. S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, and A. Morsali, Organometallics, 27, No. 1, 72–79 (2008).

    Article  CAS  Google Scholar 

  24. V. B. Delchev and G. T. Delcheva, J. Struct. Chem., 48, No. 4, 615–622 (2007).

    Article  CAS  Google Scholar 

  25. H. Eshtiagh-Hosseini, S. A. Beyramabadi, M. R. Housaindokht, and A. Morsali, J. Mol. Struct. (Theochem.), 941, Nos. 1–3, 138–143 (2010).

    Article  CAS  Google Scholar 

  26. İ. Sıdır, Y. G. Sıdır, E. Taşal, and C. Öğetir, J. Mol. Struct., 980, Nos. 1–3, 230–244 (2010).

    Google Scholar 

  27. Z. Dega-Szafran, A. Katrusiak, and M. Szafran, J. Mol. Struct., 880, Nos. 1–3, 69–76 (2008).

    Article  CAS  Google Scholar 

  28. K. B. Nuzhdin, S. V. Nesterov, D. A. Tyurin, V. I. Feldman, L. Wei, and A. Lund, J. Phys. Chem. A, 109, No. 28, 6166–6173 (2005).

    Article  CAS  Google Scholar 

  29. A. M. Brouwer, J. Phys. Chem. A, 101, No. 19, 3626–3633 (1997).

    Article  CAS  Google Scholar 

  30. S. A. Beyramabadi, A. Morsali, M. Javan Khoshkholgh, and A. A. Esmaeili, J. Struct. Chem., 2012 (accepted for publication).

  31. M. J. Frisch et al., Gaussian 03, Revision B.03, Gaussian, Inc.: Pittsburgh PA (2003).

    Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, No. 2, 785–789 (1988).

    Article  CAS  Google Scholar 

  33. J. Tomasi and R. Cammi, J. Comput. Chem., 16, No. 12, 1449–1458 (1995).

    Article  Google Scholar 

  34. D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, John Wiley & Sons, Inc. (2001).

  35. K. T. Nielsen, P. Harris, K. Bechgaard, and F. C. Krebs, Acta Crystallogr., B 63, 151–156 (2007).

    CAS  Google Scholar 

  36. F. Shaheen, A. Badshah, S. Anjum, and A. Saqib, Acta Crystallogr., E 62, m329/m330 (2006).

    CAS  Google Scholar 

  37. L.-Q. Fan, J.-H. Wu, Y.-F. Huang, and S. W. Ng, Acta Crystallogr., E 65, m1209 (2009).

    CAS  Google Scholar 

  38. L.-F. Hou, Y. Zhong, Y. Mei, and J. Fan, Acta Crystallogr., E 65, m1694 (2009).

    CAS  Google Scholar 

  39. A. Kropidlowska, J. Ianszak, J. Galaszewska, and B. Becker, Acta Crystallogr., E 63, m1947 (2007).

    CAS  Google Scholar 

  40. S. Santos Jr, S. Guilardi, J. A. L. C. Resende, M. M. M. Rubinger, M. R. L. Oliveira, and J. Ellena, Acta Crystallogr., E 59, m77–m79 (2003).

    Google Scholar 

  41. R. Selvaraju, K. Panchanatheswaran, A. Thiruvalluar, and V. Parthasarathi, Acta Crystallogr., C 51, 606–608 (1995).

    CAS  Google Scholar 

  42. F.-F. Jian, Z.-X. Wang, H.-K. Fun, Z.-P. Bai, X.-Z. You, I. A. Razak, and K. Chinnakali, Acta Crystallogr., C 54, IUC9800044 (1998).

    Google Scholar 

  43. M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, and V. S. Jayakumar, Spectrochim. Acta A, 72, No. 3, 654–662 (2009).

    Article  CAS  Google Scholar 

  44. M. Salavati-Niasari, S. N. Mirsattari, M. Monajjemi, and M. Hamadanian, J. Struct. Chem., 51, No. 3, 437–443 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beyramabadi.

Additional information

Original Russian Text Copyright © 2012 by S. A. Beyramabadi, A. Morsali, S. H. Vahidi

__________

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 4, pp. 678–686, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyramabadi, S.A., Morsali, A. & Vahidi, S.H. DFT characterization of 1-acetylpiperazinyl-dithiocarbamate ligand and its transition metal complexes. J Struct Chem 53, 665–675 (2012). https://doi.org/10.1134/S0022476612040087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612040087

Keywords

Navigation