Skip to main content
Log in

DFT, AIM, and NBO analyses of 1-methyl-2-thioxoimidazolidin-4-one tautomers and their complexes with iodine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Thioimidazoline derivatives can be used to treat hyperthyroidism due to their ability to make complexes with iodine. In this research designed to find new structures with the same ability, 1-methyl-2-thioxoimidazolidin-4-one (MTIO) and the structures of MTIO tautomers (5 tautomers), their isomers (total 9 isomers) and their complexes with iodine are optimized using the B3LYP method with two different basis sets to obtain their molecular parameters, relative energies, and vibrational frequencies. The relative energies show that in all tautomers and complexes, ketone and thione forms are more stable than enol and thienol forms, and also Z isomers are more stable than E isomers. Moreover, the NBO calculation is carried out for tautomers and complexes to obtain atomic charges and acceptor-donor interactions. These results confirm the ability of MTIO tautomers to form complexes and show that the planar complexes have more effective interaction than the perpendicular complexes. The essence and important complexation properties are also calculated and confirmed using the AIM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kohn, B. A. Kohn, M. L. Steenberg, and J. P. Buckley, J. Med. Chem., 20, 58–64 (1977).

    Article  Google Scholar 

  2. C. Laurence, M. J. Elghomari, and M. Lucon, J. Chem. Soc. Perkin Trans. 2, 1159–1162 (1998).

    Google Scholar 

  3. C. Laurence, M. J. Elghomari, and M. Berthelot, J. Chem. Soc. Perkin Trans. 2, 1163–1167 (1998).

    Google Scholar 

  4. C. Laurence, M. J. Elghomari, J. Y. Lequestel, M. Berthelo, and R. Mokhlisse, J. Chem. Soc. Perkin Trans. 2, 1545–1551 (1998).

    Google Scholar 

  5. H. Roohi, A. Ebrahimi, and S. M. Habibi, Theochem., 710, 77–82 (2004).

    Article  CAS  Google Scholar 

  6. D. K. Papayannis and A. M. Kosmas, Theochem., 851, 175–179 (2008).

    Article  CAS  Google Scholar 

  7. A. Taurog, J. Biochem. Biophys., 24, 330–337 (1996).

    Google Scholar 

  8. E. S. Raper, J. R. Creighton, R. E. Oughtred, and I. W. Nowell, Acta Cryst. B, 39, 355–361 (1983).

    Article  Google Scholar 

  9. C. Laurence, M. J. Elghomari, J. Y. Lequestel, M. Berthelot, and R. Mokhisse, J. Chem. Soc. Perkin Trans. 2, 1553–1557 (1998).

    Google Scholar 

  10. B. Jemec, Acta Pathol. Microbiol. Scand. A, 78, 151–155 (1970).

    CAS  Google Scholar 

  11. G. Roy and G. Mugesh, J. Chem. Sci., 118, 619–624 (2006).

    Article  CAS  Google Scholar 

  12. G. Roy and G. Mugesh, J. Inorg. Chem. Acta., 360, 303–308 (2000).

    Article  Google Scholar 

  13. G. Roy and G. Mugesh, J. Inorg. Phys. Chem., 1–6 (2006).

  14. J. Kohrle, Endor. Rev., 23, 944–948 (2005).

    Article  Google Scholar 

  15. H. B. Dunford, Biochem., 445, 199–204 (2006).

    Google Scholar 

  16. J. Kohrle, Exp. Clin. Endocrinol., 102, 63–67 (1994).

    Article  CAS  Google Scholar 

  17. M. J. Berry, L. Banu, and P. R. Larse, Nature, 349, 348–354 (1991).

    Article  Google Scholar 

  18. A. C. Bianco, D. Salvatore, B. Gereben, M. J. Berry, and P. R. Larsen, Endocrine Rev., 23, 38–45 (2002).

    Article  CAS  Google Scholar 

  19. J. Kohrle, Biochimie, 81, 527–534 (1999).

    Article  CAS  Google Scholar 

  20. M. J. Nowac, J. Phys. Chem., 94, 7406–7411 (1990).

    Article  Google Scholar 

  21. A. Fu, Theochem., 767, 510–513 (2006).

    Article  Google Scholar 

  22. N. V. Belova, H. Oberhammer, G. V. Girichev, and S. A. Shlykov, J. Phys. Chem. A, 112, 3209–3216 (2008).

    Article  CAS  Google Scholar 

  23. H. Tavakol, Theochem., 954, 16–21 (2010).

    Article  CAS  Google Scholar 

  24. R. Dobosz, E. Kolehmainen, A. Valkonen, B. Osmiaowski, and R. Gawinecki, Tetrahedron, 63, 9172–9178 (2007).

    Article  CAS  Google Scholar 

  25. H. Tavakol, Theochem., 916, 172–179 (2009).

    Article  CAS  Google Scholar 

  26. A. Misra and S. Dalai, Theochem., 807, 33–37 (2007).

    Article  Google Scholar 

  27. H. Tavakol and H. Sabzyan, J. Phys. Org. Chem., 1771–1776 (2010).

  28. H. Tavakol and S. Arshadi, J. Mol. Model., 15, 807–816 (2009).

    Article  CAS  Google Scholar 

  29. A. D. Dubonosov, V. I. Minkin, V. A. Bren, E. N. Shepelenko, A. V. Tsukanov, A. G. Starikov, and G. S. Borodkin, Tetrahedron, 64, 3160 (2008).

    Article  CAS  Google Scholar 

  30. H. Tavakol, Mol. Simul., 36, 391–402 (2010).

    Article  CAS  Google Scholar 

  31. B. I. Buzykin, E. V. Mronova, V. N. Nabiullin, N. M. Azancheev, L. V. Awakumova, I. K. Rizvanov, T. Gubaiduffin, I. A. Litvinov, and V. V. Syakaev, Russ. J. Gen. Chem., 78, 461–468 (2008).

    Article  CAS  Google Scholar 

  32. H. Tavakol, Int. J. Quant. Chem., QUA 22847 (2010).

  33. J. A. Bonacin, D. Melo, and H. E. Toma, Vib. Spectroscop., 107 (2007).

  34. H. Tavakol, Theochem., 956, 97–102 (2010).

    Article  CAS  Google Scholar 

  35. A. Bhan, Y. V. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B, 107, 10476–10484 (2003).

    Article  CAS  Google Scholar 

  36. X. Rozanska, R. A. Santen, T. Demuth, F. Hutschka, and J. Hafner, J. Phys. Chem. B., 107, 1309–1312 (2003).

    Article  CAS  Google Scholar 

  37. A. D. Becke, J. Chem. Phys., 98, 5648–5653 (1993).

    Article  CAS  Google Scholar 

  38. T. C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B., 37, 785–791 (1988).

    Article  CAS  Google Scholar 

  39. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612–5616 (1993).

    Article  CAS  Google Scholar 

  40. C. W. Bauschlicher and H. Partridge, J. Chem. Phys., 103, 1788–1794 (1995).

    Article  CAS  Google Scholar 

  41. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–793 (1988).

    Article  CAS  Google Scholar 

  42. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899–903 (1988).

    Article  CAS  Google Scholar 

  43. M. J. Frisch et al., Gaussian 98 Rev. A.1, Gaussian Inc., Pittsburgh PA (1998).

    Google Scholar 

  44. A. P. Scott and I. Radom, J. Phys. Chem. B, 100, 16502–16508 (1996).

    Article  CAS  Google Scholar 

  45. F. Bieglerkonig and J. Schonbohm, J. Comp. Chem., 20–24 (2002).

  46. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, New York (1990).

    Google Scholar 

  47. A. Alparone, A. Millefiori and S. Millefio, Chem. Phys., 312, 261–267 (2005).

    Article  CAS  Google Scholar 

  48. A. F. Jalbout, B. Trzaskowski, Y. Xia, Y. Li, X. Hu, and H. Li, Chem. Phys., 332, 152–157 (2007).

    Article  CAS  Google Scholar 

  49. A. Elnahas, L. A. W. Liang, H. Li, X. Hu, and S. Han, Chem. Phys., 328, 93–97 (2006).

    Article  Google Scholar 

  50. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, 5th ed., Springer, US, New York (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tavakol.

Additional information

Original Russian Text Copyright © 2012 by H. Tavakol, T. Hadadi, H. Roohi

__________

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 4, pp. 662–671, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakol, H., Hadadi, T. & Roohi, H. DFT, AIM, and NBO analyses of 1-methyl-2-thioxoimidazolidin-4-one tautomers and their complexes with iodine. J Struct Chem 53, 649–658 (2012). https://doi.org/10.1134/S0022476612040063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612040063

Keywords

Navigation