Skip to main content
Log in

Theoretical investigation of tautomerism in N-hydroxy amidines

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A DFT study with QST3 approach method is used to calculate kinetic, thermodynamic, spectral and structural data of tautomers and transition state structures of some N-hydroxy amidines. All tautomers and transition states are optimized at the B3LYP/6-311++g** and B3LYP/aug-cc-pvtz level, with good agreement in energetic result with energies obtained from CBS-QB3, a complete basis set composite energy method. The result shows that the tautomer a (amide oxime) is more stable than the tautomer b (imino hydroxylamine) as is reported in the literature. In addition, our finding shows that, the energy difference between two tautomers is only in about 4–10 kcal/mol but the barrier energy found in traversing each tautomer to another one is in the range of 33–71 kcal/mol. Therefore, it is impossible to convert these two tautomers to each other at room temperature. Additionally, transition state theory is applied to estimate the barrier energy and reaction rate constants of the hydrogen exchange between tautomers in presence of 1–3 molecules of water. The computed activation barrier shows us that the barrier energy of solvent assisted tautomerism is about 9–20 kcal/mol and lower than simple tautomerism and this water-assisted tautomerism is much faster than simple tautomerism, especially with the assisting two molecules of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolaides DN, Varella EA, in: Patai S (ed), (1992) The Chemistry of Acid Derivatives, vol. 2, Suppl. B, Wiley, New York p875

  2. Eloy F, Lenaers R (1962) Chem Rev 62:55

    Article  Google Scholar 

  3. Rehse K, Brehme F (1998) Arch Pharm (Weinheim) 331:375

    Article  CAS  Google Scholar 

  4. Vetrovsky P, Bouche J-L, Schott C, Beranova P, Chalupsky K, Callizot N, Muller B, Entlicher G, Mansuy D, Stoclet J-CJ (2002) Pharmacol Exp Ther 303:823

    Article  CAS  Google Scholar 

  5. Chalupsky K, Lobysheva I, Nepveu F, Gadea I, Beranova P, Entlicher G, Stocklet J-C, Muller B (2004) Biochem Pharm 67:1203

    Article  CAS  Google Scholar 

  6. Oresma L, Kotikoski H, Haukka M, Oksala O, Pohjala E, Vapaatalo H, Moilanen E, Vainiotalo P, Aulaskari P (2006) Eur J Med Chem 41:1073–1079

    Article  CAS  Google Scholar 

  7. Oresma L, Kotikoski H, Haukka M, Oksala O, Pohjala E, Vapaatalo H, Vainiotaloa P, Aulaskari P (2006) Bioorg Med Chem Lett 16:2144–2147

    Article  CAS  Google Scholar 

  8. Zhong YL, Zhou H, Gauthier DR, Askin D (2006) Tetrahedron Lett 47:1315–1317

    Article  CAS  Google Scholar 

  9. Yamamoto Y, Tsuritani T, Mase T (2008) Tetrahedron Lett 49:876–878

    Article  CAS  Google Scholar 

  10. Evans MD, Ring J, Schoen A, Bell A, Edwards P, Berthelot D, Nicewongera R, Baldinoa CM (2003) Tetrahedron Lett 44:9337–9341

    Article  CAS  Google Scholar 

  11. Kakanejadifard A, Mahmodi L, Yari A (2006) J Heterocycl Chem 43:1695–1697

    Article  CAS  Google Scholar 

  12. Saeed K, Haider S, Oh T-J, Park S-U (2008) J Membr Sci 322:400–405

    Article  CAS  Google Scholar 

  13. Kavakli PA, Uzun C, Guven O (2004) React Funct Polym 61:245–254

    Article  CAS  Google Scholar 

  14. Caykaraa T, Alaslana SS, Guru M, Bodugoz H, Guven O (2007) Radiat Phys Chem 76:1569–1576

    Article  CAS  Google Scholar 

  15. Zohuriaan-Mehra MJ, Pourjavadib A, Salehi-Radb M (2004) React Funct Polym 61:23–31

    Article  CAS  Google Scholar 

  16. Kitamura A, Hamamoto S, Taniike A, Ohtani Y, Kubota N, Furuyama Y (2004) Radiat Phys Chem 69:171–178

    Article  CAS  Google Scholar 

  17. Farnia SMF, Kakanejadifard A, Soudbar D (1997) Tetrahedron 53:2557–2564

    Article  CAS  Google Scholar 

  18. John K, Gallos JK, Dellios CC (2003) Tetrahedron Lett 44:5679–5681

    Article  CAS  Google Scholar 

  19. Song Y, Clizb L, Bhakta C, Teng W, Wong P, Huang B, Tran K, Sinha U, Park G, Reed A, Scarborougha RM, Zhua B-Y (2003) Bioorg Med Chem Lett 13:297–300

    Article  CAS  Google Scholar 

  20. Ghiasvand AR, Ghaderi R, Kakanejadifard A (2004) Talanta 62:287–292

    Article  CAS  Google Scholar 

  21. Zhang A, Uchiyama G, Asakura T (2005) React Funct Polym 63:143–153

    Article  CAS  Google Scholar 

  22. Nogamia M, Kimb S-Y, Asanuma N, Ikedac Y (2004) Journal of Alloys and Compounds 374:269–271

    Article  CAS  Google Scholar 

  23. Zhang A, Asakura T, Uchiyama G (2003) React Funct Polym 57:67–76

    Article  CAS  Google Scholar 

  24. Choia S-H, Choia M-S, Parka Y-T, Leea K-P, Kang H-D (2003) Radiat Phys Chem 67:387–390

    Article  CAS  Google Scholar 

  25. Shiraishia T, Tamada M, Saitoc K, Sugo T (2003) Radiat Phys Chem 66:43–47

    Article  Google Scholar 

  26. Sureshbabu VV, Hemantha HP, Naik SA (2008) Tetrahedron Lett 49:5133–5136

    Article  CAS  Google Scholar 

  27. Ferrara M, Crescenzi B, Donghi M, Muraglia E, Nizi E, Pesci S, Summa V, Gardelli C (2007) Tetrahedron Lett 48:8379–8382

    Article  CAS  Google Scholar 

  28. Olaf D, Kinzel OD, Monteagudo E, Muraglia E, Orvieto F, Pescatore G, RicoFerreira MdR, Rowley M, Summa V (2007) Tetrahedron Lett 48:6552–6555

    Article  CAS  Google Scholar 

  29. Ouattara M, Wein S, Calas M, Hoang YV, Viala H, Escaleb R (2007) Bioorg Med Chem Lett 17:593–596

    Article  CAS  Google Scholar 

  30. Oresma L, Kotikoski H, Haukka M, Oksala O, Pohjala E, Vapaatalo H, Vainiotaloa P, Aulaskari P (2006) Bioorg Med Chem Lett 16:2144–2147

    Article  CAS  Google Scholar 

  31. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Article  CAS  Google Scholar 

  32. Durust Y, Akcan M, Martiskainen O, Siirola E, Pihlaja K (2008) Polyhedron 27:999–1007

    Article  CAS  Google Scholar 

  33. Grochowski J, Serda P, Markiewicz M, Kozik B, Sepiol JJ (2004) J Mol Struct 689:43–48

    Article  CAS  Google Scholar 

  34. Kumar A, Jain SK, Rastogi RC (2004) Theochem 678:55–61 (b) Enchev V, Abrahams I, Angelova S, Ivanova G (2005) Theochem 719:169–175

    Google Scholar 

  35. Platonov MO, Samijlenko SP, Sudakov OO, Kondratyuk IV, Hovorun DM (2005) Spectrochim Acta, Part A 62:112–114

    Article  CAS  Google Scholar 

  36. Chung G, Oh HB, Lee D (2005) Theochem 730: 241–249 (b) Moreno M, Miller WH (1990) Chem Phys Lett 171:475–479

  37. Roohi H, Ebrahimi A, Habibi SM (2004) Theochem 710: 77–84 (b) Rubin YV, Morozov Y, Venkateswarlu D, Leszczynski J (1998) J Phys Chem A 102:2194–2200

  38. Foogarasi G, Szalay PG (2002) Chem Phys Lett 356:383–390 (b) Yekeler H (2005) Theochem 713:201–206

  39. Kwiatkowski JS, Leszcynski J (1996) J Phys Chem 100:941–953 (b) Ralhan S, Ray NK (2003) THEOCHEM 634:83–88

    Google Scholar 

  40. Jursic BS (1997) J Chem Soc Perkin Trans 2:637

    Google Scholar 

  41. Truong TN, Truong TT (1999) Chem Phys Lett 314:529

    Article  CAS  Google Scholar 

  42. Truong TNJ (2000) Chem Phys 113:4957

    CAS  Google Scholar 

  43. Hay PJ, Redondo A, Guo YJ (1999) Catal Today 50:517

    Article  Google Scholar 

  44. Frash MV, Kazansky VB, Rigby AM, van Santen RA (1998) J Phys Chem B 102:2232

    Article  CAS  Google Scholar 

  45. Bottoni A (1996) J Chem Soc Perkin Trans 2:2041

    Google Scholar 

  46. Bhan A, Joshi YV, Delgass WN, Thomson KT (2003) J Phys Chem B 107:10476

    Article  CAS  Google Scholar 

  47. Gonzales NO, Chakraborty AK, Bell AT (1998) Catal Lett 50:135

    Article  CAS  Google Scholar 

  48. Rozanska X, van Santen RA, Demuth T, Hutschka F, Hafner J (2003) J Phys Chem B 107:1309

    Article  CAS  Google Scholar 

  49. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  50. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  51. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612

    Article  CAS  Google Scholar 

  52. Bauschlicher CW, Partridge H (1995) J Chem Phys 103:1788

    Article  CAS  Google Scholar 

  53. Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Mantzaris J (1988) Chem Phys 89:2193

    CAS  Google Scholar 

  54. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  55. Morihovitis T, Schiesser CH, Skidmore MA (1999) J Chem Soc Perkin Trans 2:2041

    Google Scholar 

  56. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  57. Mayer PM, Parkinson CJ, Smith DM, Radom L (1998) J Chem Phys 108:604

    Article  CAS  Google Scholar 

  58. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598

    Article  CAS  Google Scholar 

  59. Montgomery JA, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900

    Article  CAS  Google Scholar 

  60. Petersson GA, Allaham MA (1991) J Chem Phys 94:6081

    Article  CAS  Google Scholar 

  61. Petersson GA, Tensfeldt TG, Montgomery JA (1991) J Chem Phys 94:6091–6101

    Article  CAS  Google Scholar 

  62. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785 1991) 6091

  63. Gaussian 03, Revision C02, Frisch MJ et al (2004) Gaussian, Inc, Wallingford CT

  64. GaussView, Version 309, Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) Semichem, Inc, Shawnee Mission, KS

  65. Scott AP, Radom I (1996) J Phys Chem 100:16502–16508

    Article  CAS  Google Scholar 

  66. Masel RI (1996) Principles of Adsorption and Reaction on Solid Surfaces. Wiley, New York

    Google Scholar 

  67. Masel RI (2001) Chemical Kinetics and Catalysis. Wiley-Interscience, New York

    Google Scholar 

  68. Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions. Wiley, New York

    Google Scholar 

  69. Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell Scientific, Oxford, England

    Google Scholar 

  70. Mietrus S, Scrocco E (1981) J Chem Phys 55:117

    Article  Google Scholar 

  71. Mietrus S, Tomasi E (1981) J Chem Phys 65:239

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Dr. Habibollah Mashhadi and Mr. Mohammad Zakery for their assistance in English editing of our manuscript. In addition, this work has been supported by the research affair of University of Zabol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakol, H., Arshadi, S. Theoretical investigation of tautomerism in N-hydroxy amidines. J Mol Model 15, 807–816 (2009). https://doi.org/10.1007/s00894-008-0435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0435-4

Keywords

Navigation