Skip to main content
Log in

An atomistic level description of guest molecule effect on the formation of hydrate crystal nuclei by ab initio calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present study, we report the results of a systematic investigation of cage-like water structures using the first-principles calculations. These results show that, in the case of methane hydrate, the following nucleation mechanism can be revealed. The formation of small water cavities filled with methane is the first step of the formation of methane hydrate. It is not necessary to occupy all dodecahedral cages by guest molecules. After that small cavities start to form the H-bonding network with surrounding water molecules and a small number of water molecules is enough for the formation of a stable hydrogen-bonding network. The structural information contained in such nuclei is conserved in the forming crystal. Moreover, the presence of a methane molecule between small cages is also important to prevent the adhesion of cavities. It found that the ozone molecule can also stabilize the small cage since the value of the interaction energy between the ozone guest and the water host framework is very close to that obtained for the methane case. However, ozone affects the structure of large cavities and hence, the second guest is necessary to stabilize the hydrate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3nd ed., Taylor & Francis, Boca Raton (2007).

    Book  Google Scholar 

  2. H. T. Lotz and J. A. Schouten, J. Chem. Phys., 111, 10242–10247 (1999).

    Article  CAS  Google Scholar 

  3. Y. F. Makogon, Ann. N. Y. Acad. Sci., 715, 119–145 (1994).

    Article  CAS  Google Scholar 

  4. M. H. F. Sluiter, R. V. Belosludov, A. Jain, V. R. Belosludov, H. Adachi, Y. Kawazoe, K. Higuchi, and T. Otani, Lect. Notes Comput. Sci., 2858, 330–341 (2003).

    Article  Google Scholar 

  5. S. Patchkovskii and S. N. Yurchenko, Phys. Chem. Chem. Phys., 6, 4152–4155 (2004).

    Article  CAS  Google Scholar 

  6. S. Alavi, J. A. Ripmeester, and D. D. Klug, J. Chem. Phys., 123, 024507 (2005).

    Article  Google Scholar 

  7. M. Z. Xu, F. Sebastianelli, and Z. Bacic, J. Phys. Chem. A, 113, 7601–7609 (2009).

    Article  CAS  Google Scholar 

  8. V. R. Belosludov, O. S. Subbotin, D. S. Krupskii, R. V. Belosludov, Y. Kawazoe, and J. Kudoh, Mater. Trans., 48, 704–710 (2007).

    Article  CAS  Google Scholar 

  9. R. V. Belosludov, O. S. Subbotin, H. Mizuseki, Y. Kawazoe, and V. R. Belosludov, J. Chem. Phys., 131, 244510 (2009).

    Article  Google Scholar 

  10. K. Katsumasa, K. Koga, and H. Tanaka, J. Chem. Phys., 127, 044509 (2007).

    Article  Google Scholar 

  11. S. Alavi, J. A. Ripmeester, and D. D. Klug, J. Chem. Phys., 124, 014704 (2006).

    Article  Google Scholar 

  12. S. Alavi, R. Susilo, and J. A. Ripmeester, J. Chem. Phys., 130, 174501 (2009).

    Article  Google Scholar 

  13. E. D. Sloan, J. Chem. Thermodyn., 35, 41–53 (2003).

    Article  Google Scholar 

  14. S. Subramaian and E. D. Sloan, Fluid Phase Equilib., 158, 813–820 (1999).

    Article  Google Scholar 

  15. T. Pietrass, H. C. Gaede, A. Bifone, A. Pines, and J. A. Ripmeester, J. Am. Chem. Soc., 117, 7520–7525 (1995).

    Article  CAS  Google Scholar 

  16. S. Subramaian and E. D. Sloan, Ann. N. Y. Acad. Sci., 912, 583–592 (2000).

    Article  Google Scholar 

  17. T. Uchida, R. Okabe, K. Gohara, S. Mae, Y. Seo, H. Lee, S. Takeya, J. Nagao, T. Ebinuma, and H. Narita, Can. J. Phys., 81, 359–366 (2003).

    Article  CAS  Google Scholar 

  18. I. L. Moudrakovski, A. A. Sanchez, C. I. Ratcliffe, and J. A. Ripmeester, J. Phys. Chem., 105, 12338–12347 (2001).

    Article  CAS  Google Scholar 

  19. C. Moon, P. C. Taylor, and P. M. Rodger, J. Am. Chem. Soc., 125, 4706/4707 (2003).

    Article  Google Scholar 

  20. M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Science, 5956, 1095–1098 (2009).

    Article  Google Scholar 

  21. A. Khan, J. Chem. Phys., 110, 11884–11889 (1999).

    Article  CAS  Google Scholar 

  22. A. Khan, J. Phys. Chem. A, 105, 7429–7434 (2001).

    Article  CAS  Google Scholar 

  23. A. Khan, J. Chem. Phys., 116, 6628–6633 (2002).

    Article  CAS  Google Scholar 

  24. A. Hori and T. Hondoh, Can. J. Phys., 81, 33–38 (2003).

    Article  CAS  Google Scholar 

  25. A. A. Pomeransky, V. R. Belosludov, and T. M. Inerbaev, in: Advances in the Study of Gas Hydrates, C. E. Taylor and J. T. Kwan (eds.), Kluwer Academic, New York (2004), pp. 173–184.

    Chapter  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D. 01, Gaussian, Inc., Pittsburg, PA (2004).

    Google Scholar 

  27. M. J. Frisch, J. E. Delbene, J. S. Binkley, and H. F. Schaefer III, J. Chem. Phys., 84, 2279–2289 (1986).

    Article  CAS  Google Scholar 

  28. C. Y. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem., 17, 49–56 (1996).

    Article  CAS  Google Scholar 

  29. V. R. Belosludov, V. P. Shpakov, J. S. Tse, R. V. Belosludov, and Y. Kawazoe, Ann. N. Y. Acad. Sci., 912, 993–1002 (2000).

    Article  CAS  Google Scholar 

  30. A. K. Sum, R. C. Burruss, and E. D. Sloan, J. Phys Chem. B, 101, 7371–7377 (1997).

    Article  CAS  Google Scholar 

  31. G. McTurk and J. G. Waller, Nature, 493, 1107 (1964).

    Article  Google Scholar 

  32. S. Muromachi, R. Ohmura, S. Takeya, and Y. H. Mori, J. Phys. Chem. B, 14, 11430–11435 (2010).

    Article  Google Scholar 

  33. S. Muromachi, S. Takeya, R. Ohmura, and Y. H. Mori, Fluid Phase Equilib., 305, 145–151 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Subbotin.

Additional information

Original Russian Text Copyright © 2012 by R. V. Belosludov, H. Mizuseki, M. Souissi, Y. Kawazoe, J. Kudoh, O. S. Subbotin, T. P. Adamova, V. R. Belosludov

Devoted to the Jubilee of Academician F. A. Kuznetsov

__________

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 4, pp. 633–639, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belosludov, R.V., Mizuseki, H., Souissi, M. et al. An atomistic level description of guest molecule effect on the formation of hydrate crystal nuclei by ab initio calculations. J Struct Chem 53, 619–626 (2012). https://doi.org/10.1134/S0022476612040014

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612040014

Keywords

Navigation