Skip to main content
Log in

Bond rupture force measurement by means of a quartz resonator

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Methods to measure the bond rupture force are considered. It is proposed to use a quartz resonator as an active element rather than simply a sensor. When the surface oscillation amplitude of an AT quartz resonator increases smoothly (rupture event scanning), a particle attached to the quartz surface is removed by inertial forces, and from their values it is easy to obtain the bond dissociation value. This procedure provides reliable measurements of the rupture force of about 10 pN. As the atomic force microscopy method, the rupture event scanning does not apply electromagnetic radiation, but has simpler instrumental set-up. The scanning requires minimum sample preparation, can be performed in various media (vacuum, air, liquid), and takes only a few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Evans, Annu. Rev. Biophys. Biomol. Struct., 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  2. E. Evans, Faraday Discuss., 111, 1–16 (1998).

    Article  CAS  Google Scholar 

  3. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nature Phys., 5, 915–919 (2009)

    Article  CAS  Google Scholar 

  4. A.-S. Duwez, S. Cuenot, C. Jerome, S. Gabriel, R. Jerome, S. Rapino, and F. Zerbetto, Nature Nanotechn., 1, 122–125 (2006).

    Article  CAS  Google Scholar 

  5. S. W. Schmidt, M. K. Beyer, and H. Clausen-Schaumann, J. Am. Chem. Soc., 130, 3664–3668 (2008).

    Article  CAS  Google Scholar 

  6. Y. Sugimoto, T. Namikawa, K. Miki, M. Abe, and S. Morita, Phys. Rev. B, 77, 195424 (2008).

    Article  Google Scholar 

  7. M. Menotta, R. Crinelli, E. Carloni, V. Mussi, U. Valbusa, and M. Magnani, Biosensors and Bioelectronics, 28-1, 158–165 (2011).

    Article  Google Scholar 

  8. S. W. Han, S. Mieda, C. Nakamura, T. Kihara, N. Nakamura, and J. Miyake, J. Mol. Recognit., 24, 17–22 (2011).

    Article  CAS  Google Scholar 

  9. D. Alsteens, M. C. Garcia, P. N. Lipke, and Y. F. Dufre ne, PNAS, 107, 20744–20749 (2010).

    Article  CAS  Google Scholar 

  10. J. H. Hoh, J. P. Cleveland, C. B. Pratter, J.-P. Revel, and P. K. Hansma, J. Am. Chem. Soc., 114, No. 12, 4917/4918 (1992).

    Article  Google Scholar 

  11. G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir, 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  12. S. Izrailev, S. Stepaniants, M. Baisera, Y. Oono, and K. Schulten, Biophys. J., 72, 1568–1581 (1997).

    Article  CAS  Google Scholar 

  13. E. Evans and K. Ritchie, Biophys. J., 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  14. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Science, 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  15. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930–933 (1986).

    Article  Google Scholar 

  16. J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, Chem. Phys. Lett., 217, Nos. 5/6, 589–594 (1994).

    Article  CAS  Google Scholar 

  17. J. R. Barnes, R. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, Nature, 372, 79–82 (1994).

    Article  CAS  Google Scholar 

  18. T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Appl. Phys. Lett., 64, No. 21, 2894–2896 (1994).

    Article  CAS  Google Scholar 

  19. R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, and H.-J. Güntherodt, Science, 276, 2021–2024 (1997).

    Article  CAS  Google Scholar 

  20. R. Berger, E. Delamarche, H. P. Lang, Ch. Gerber, J. K. Gimzewski, E. Meyer, and H.-J. Güntherodt, Appl. Phys. A, 66,Suppl. 1, S55–S59 (1998).

    Article  CAS  Google Scholar 

  21. H. G. Craighead, Science, 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  22. M. Godin, V. Tabard-Cossa, P. Grütter, and P. Williams, Appl. Phys. Lett., 79, No. 4, 551–553 (2001).

    Article  CAS  Google Scholar 

  23. H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H.-J. Güntherodt, Appl. Phys. Lett., 72, No. 3, 383–385 (1998).

    Article  CAS  Google Scholar 

  24. H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, Appl. Phys. A, 66,Suppl. 1, S61–S64 (1998).

    Article  CAS  Google Scholar 

  25. F. M. Battiston, J.-P. Ramseyer, H. P. Lang, M. K. Baller, Ch. Gerber, J. K. Gimzewski, E. Meyer, and H.-J. Güntherodt, Sensors and Actuators B, 77, Nos. 1/2, 122–131 (2001).

    Article  Google Scholar 

  26. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science, 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  27. H. P. Lang, M. Hegner, E. Meyer, and Ch. Gerber, Nanotechnology, 13, No. 5, R29–R36 (2002).

    Article  CAS  Google Scholar 

  28. Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, and Ch. Gerber, Nanotechnology, 14, No. 1, 86–90 (2003).

    Article  CAS  Google Scholar 

  29. Y. Tang, J. Fang, X. Xu, H.-F. Ji, G. M. Brown, and T. Thundat, Analyt. Chem., 76, No. 9, 2478–2481 (2004).

    Article  CAS  Google Scholar 

  30. J. Mertens, E. Finot, M.-H. Nadal, V. Eyraud, O. Heintz, and E. Bourillot, Sensor and Actuators, B, 99, No. 1, 58–65 (2004).

    Article  Google Scholar 

  31. M. álvarez, L. G. Carrascosa, M. Moreno, A. Calle, Á. Zaballos, L. M. Lechuga, A. C. Martínez, and J. Tamayo, Langmuir, 20, No. 22, 9663–9668 (2004).

    Article  Google Scholar 

  32. K. Yum, Z. Wang, A. P. Suryavanshi, and M.-F. Yu, J. Appl. Phys., 96, No. 7, 3933–3938 (2004).

    Article  CAS  Google Scholar 

  33. A. Kooser, R. L. Gunter, W. D. Delinger, T. L. Porter, and M. P. Eastman, Sensor and Actuators, B, 99, Nos. 2/3, 474–479 (2004).

    Article  Google Scholar 

  34. L. Fadel, I. Dufour, F. Lochon, and O. Francais, Sensor and Actuators, B, 102, No. 1, 73–77 (2004).

    Article  Google Scholar 

  35. X. Yan, H.-F. Ji, and Y. Lvov, Chem. Phys. Lett., 396, Nos. 1–3, 34–37 (2004).

    Article  CAS  Google Scholar 

  36. J. Pei, F. Tian, and T. Thundat, Analyt. Chem., 76, No. 2, 292–297 (2004).

    Article  CAS  Google Scholar 

  37. W. H. Ryu, Y.-C. Chung, D.-K. Choi, C. S. Yoon, C. K. Kim, and Y.-H. Kim, Sensor and Actuators, B, 97, No. 1, 98–102 (2004).

    Article  Google Scholar 

  38. Y. Tang, J. Fang, X. Yan, and H.-F. Ji, Sensor and Actuators, B, 97, No. 1, 109–113 (2004).

    Article  Google Scholar 

  39. H. P. Lang, M. Hegner, and Ch. Gerber, Materials Today, 5, 30–36 (2005).

    Article  Google Scholar 

  40. F. N. Dultsev, V. P. Ostanin, and D. Klenerman, Langmuir, 16, 5036–5040 (2000).

    Article  CAS  Google Scholar 

  41. B. Borovsky, J. Appl. Phys., 88, 4017–4021 (2000).

    Article  CAS  Google Scholar 

  42. K. K. Kanazava, Faraday Discuss., 107, 77–90 (1997).

    Article  Google Scholar 

  43. H. Bahadur and R. Parshad, in: Physical Acoustics: Principles and Methods, W. P. Mason and R. N. Thurston (eds.), Vol. 16, Academic Press, New York (1982), pp. 37–171.

    Google Scholar 

  44. A. C. Hillier and M. D. Ward, Anal. Chem., 64, 2539–2554 (1992).

    Article  CAS  Google Scholar 

  45. K.-C. Chang and D. A. Hammer, Langmuir, 12, No. 9, 2271–2282 (1996).

    Article  CAS  Google Scholar 

  46. M. Dembo, D. C. Torney, K. Saxman, and D. A. Hammer, Proc. R. Soc. (London), Ser. B, 234, 55–83 (1988).

    Article  CAS  Google Scholar 

  47. M. Gonzalez, L. A. Bagatolli, I. Echabe, L. R. Arrondo Jose, E. Argarana Carlos, R. Cantor Charles, and D. Fidelio Gerardo, Biolog. Chem., 272, No. 17, Issue of April 25, 11288–11294 (1997).

    Article  CAS  Google Scholar 

  48. B. C. Galarreta and P. R. Norton, Langmuir, 27(4), 1494–1498 (2011).

    Article  CAS  Google Scholar 

  49. F. N. Dultsev and E. A. Kolosovsky, Sensors and Actuators B, 143, 17–24 (2009).

    Article  Google Scholar 

  50. G. L. Dybwad, J. Appl. Phys., 58, 2789/2790 (1985).

    Article  Google Scholar 

  51. J. Zhou, L. Zhang, and Y. Leng, J. Chem. Phys., 125, 104905 (2006).

    Article  Google Scholar 

  52. F. N. Dultsev, R. E. Speight, M. T. Fiorini, J. M. Blackburn, C. Abell, V. P. Ostanin, and D. Klenerman, Anal. Chem., 73, 3935–3939 (2001).

    Article  CAS  Google Scholar 

  53. M. A. Cooper, F. N. Dultsev, T. Minson, V. P. Ostanin, C. Abell, and D. Klenerman, Nature Biotechnol., 19(9), 833–837 (2001).

    Article  CAS  Google Scholar 

  54. F. N. Dultsev and E. A. Kolosovsky, Langmuir, 25(20), 12195–12200 (2009).

    Article  CAS  Google Scholar 

  55. F. N. Dultsev and E. A. Kolosovsky, Analyt. Chim. Acta, 687, 75–81 (2011).

    Article  CAS  Google Scholar 

  56. S. J. Grabowski, Annu. Rep. Prog. Chem., Sect. C, 102, 131–165 (2006).

    Article  CAS  Google Scholar 

  57. O. Lichtenberger and J. Woltersdorf, Mater. Chem. Phys., 44(I-3), 222–232 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Dultsev.

Additional information

Original Russian Text Copyright © 2012 by F. N. Dultsev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, No. 3, pp. 455–465, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dultsev, F.N. Bond rupture force measurement by means of a quartz resonator. J Struct Chem 53, 449–459 (2012). https://doi.org/10.1134/S0022476612030067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612030067

Keywords

Navigation