Skip to main content
Log in

A quantum chemical study of photochemical processes in the reaction Se + O2 → SeO2 with allowance for the spin orbit interaction

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT, SA-MCSCF, and MRMP/MCQDPT2 methods in the 6-311++G(2d) basis set are employed to consider the features of the formation reaction of key intermediates (SeOO, Se(O2)) and photochemical dissociation of selenium dioxide with the formation of singlet oxygen. The cross-sections of potential energy surfaces of SeO2, Se(O2), and SeOO are constructed and the terms of their ground and excited states are analyzed at the SeOO dissociation limit with regard to spin-orbital interaction. Possible formation channels of 1O2 (1Δ g , 1Σ + g ) reactive oxygen species during the decay of the excited states of selenium oxocomplexes are revealed. The effect of the spin-orbit interaction on the character of electronic spectrum transitions and zero field splitting in oxygen is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Andara, D. M. Heasman, A. F. Gonzalez, and M. Prieto, Crystal Growth Design, 4, 4 (2005).

    Google Scholar 

  2. Y. Z. Li, H. L. Tong, Y. Q. Zhuo, et al., Environ. Sci. Technol., 40, 4306 (2006).

    Article  CAS  Google Scholar 

  3. P. Refait, L. Simon, and J. M. R. Geanin, Environ. Sci. Technol., 34, 819 (2000).

    Article  CAS  Google Scholar 

  4. L. Chien, Y. Ching-Ying, S. Huang, et al., Sci. Total Environ., 311, 57 (2003).

    Article  CAS  Google Scholar 

  5. J. H. Stout, K. A. Trust, J. F. Cochrane, et al., Environ. Pollut., 119, 215 (2002).

    Article  CAS  Google Scholar 

  6. E. P. Talzi, Soros Obraz. Zh., No. 6, 35 (2000).

  7. D. G. Urvaev, V. E. Khramova, and G. I. Kobzev, Proc. Of the 19th Symp. “Modern Chemical Physics” [in Russian], Tuapse (2007), p. 251.

  8. G. I. Kobzev and D. G. Urvaev, J. Struct. Chem., 47, No. 4, 608–615 (2006).

    Article  CAS  Google Scholar 

  9. G. I. Kobzev, and B. F. Minaev, Rus. J. Phys. Chem., 79,Supl. 1, S166 (2005).

    CAS  Google Scholar 

  10. E. M. Voigt, B. Meyer, A. Morelle, and J. J. Smith, J. Mol. Spectroscop., 34, 179 (1970).

    Article  Google Scholar 

  11. E. A. Alekseev, O. I. Baskakov, and S. F. Dyubko, Proc. SPIE-Int. Soc. Opt. Eng., 163 (1997).

  12. Harutoshi Takeoa, Eizi Hirotab, and Yonezo Morino, J. Mol. Spectroscop., 41, 420 (1972).

    Article  Google Scholar 

  13. G. W. King and P. R. McLean, J. Mol. Spectroscop., 52, 154 (1974).

    Article  CAS  Google Scholar 

  14. G. W. King and R. C. Meatherall, J. Mol. Spectroscop., 106, 196 (1984).

    Article  CAS  Google Scholar 

  15. A. W. Miziolek, Chem. Phys. Lett., 74, 32 (1980).

    Article  CAS  Google Scholar 

  16. S. A. Crowther and J. M. Brown, J. Mol. Spectroscop., 225, 206 (2004).

    Article  CAS  Google Scholar 

  17. G. D. Brabson, L. Andrews, and C. J. Marsden, J. Phys. Chem., 100, 16487 (1996).

    Article  CAS  Google Scholar 

  18. F. Grein, Chem. Phys., 360, 1 (2009).

    Article  CAS  Google Scholar 

  19. W. Xu and W. Bai, J. Mol. Struct. (Theochem.), 863, 1 (2008).

    Article  CAS  Google Scholar 

  20. J. V. Coe, J. T. Snodgrass, C. B. Freidhoff, et al., J. Chem. Phys., 84, 618 (1986).

    Article  CAS  Google Scholar 

  21. J. T. Snodgrass, J. V. Coe, K. M. McHugh, et al., J. Phys. Chem., 93, 1249 (1989).

    Article  CAS  Google Scholar 

  22. R. F. Barrow and E. W. Deutsch, Proc. Phys. Soc., 82, 548 (1963).

    Article  CAS  Google Scholar 

  23. V. S. Kushawaha and C. M. Pathak, Spectroscop. Lett., 5, 393 (1972).

    Article  CAS  Google Scholar 

  24. A. Carrington, G. N. Currie, D. H. Levy, and T. A. Miller, Mol. Phys., 17, 535 (1969).

    Article  CAS  Google Scholar 

  25. P. J. Ficalora, J. C. Thompson, and J. L. Margrave, J. Inorg. Nucl. Chem., 31, 3771 (1969).

    Article  CAS  Google Scholar 

  26. M. Alberti, M. E. Zbyněk Špalt, G. Peňa-Méndez, et al., J. Rapid Commun. Mass Spectrom., 19, 3405 (2005).

    Article  CAS  Google Scholar 

  27. J. Havel, M. E. Zbyněk Špalt, G. Peňa-Méndez, et al., J. Rapid Commun. Mass Spectrom., 20, 1019 (2006).

    Article  Google Scholar 

  28. P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964).

    Article  Google Scholar 

  29. W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133 (1965).

    Google Scholar 

  30. L. V. Gurvich et al., Dissociation Energies of Chemical Bonds [in Russian], Handbook, Nauka, Moscow (1974).

    Google Scholar 

  31. M. W. Schmidt et al., J. Comput. Chem., 14, 1347 (1993).

    Article  CAS  Google Scholar 

  32. S. McGlynn, T. Adzumi, and M. Kinosita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).

    Google Scholar 

  33. A. A. Radtsig and B. M. Smirnov, Handbook on Atomic and Molecular Physics [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  34. B. F. Minaev, Izv. Vyssh. Uchebn. Zaved., Ser. Fizi., No. 9, 115–120 (1978).

  35. B. F. Minaev, S. Lunell, and G. I. Kobzev, J. Mol. Struct. (Theochem.), 284, 1 (1993).

    Article  Google Scholar 

  36. G. I. Kobzev, B. F. Minaev, Z. M. Muldakhmetov, et al., Opt. Spectroscop., 83, No. 1, 64 (1997).

    CAS  Google Scholar 

  37. B. F. Minaev, Z. M. Muldakhmetov, E. I. Fedulova, et al., Zh. Prikl. Spectroskop., 67, No. 4, 453 (2000).

    Google Scholar 

  38. B. F. Minaev and G. I. Kobzev, J. Spectrochim. Acta. Part A, 59, No. 14, 3387 (2003).

    Article  Google Scholar 

  39. B. F. Minaev, S. Lunnel, and G. I. Kobzev, J. Quant. Chem., 50, 279 (1994).

    Article  CAS  Google Scholar 

  40. G. I. Kobzev and D. G. Urvaev, Zh. Fiz. Khim., 84, No. 4, 1324 (2010).

    Google Scholar 

  41. R. David and J. C. Weisshaar, J. Phys. Chem., 94, 4907 (1990).

    Article  Google Scholar 

  42. M. Helmer and J. M. Plane, J. Chem. Soc. Faraday Trans., 90, 395 (1994).

    Article  CAS  Google Scholar 

  43. R. Matsui, K. Senba, and K. Honma, J. Phys. Chem., 101, 179 (1997).

    Article  CAS  Google Scholar 

  44. C. W. Lu, Y. J. Wu, Y. P. Lee, et al., J. Chem. Phys., 121, 8271 (2004).

    Article  CAS  Google Scholar 

  45. M. Tinkhar and M. W. P. Strandberg, Phys. Rev., 97, 937 (1955).

    Article  Google Scholar 

  46. P. R. Ogilby, Acc. Chem. Res., 32, 512 (1999).

    Article  CAS  Google Scholar 

  47. A. A. Krasnovskii, jnr, Zh. Biokhim., 72, No. 10, 1311 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Kobzev.

Additional information

Original Russian Text Copyright © 2012 by G. I. Kobzev, D. G. Urvaev, K. S. Davydov, and Yu. V. Zaika

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, No. 1, pp. 18–33, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobzev, G.I., Urvaev, D.G., Davydov, K.S. et al. A quantum chemical study of photochemical processes in the reaction Se + O2 → SeO2 with allowance for the spin orbit interaction. J Struct Chem 53, 12–27 (2012). https://doi.org/10.1134/S0022476612010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612010027

Keywords

Navigation