Skip to main content
Log in

Computational investigation of the CH3XC=S...S (X = H, HO, HS, PH2, CH3) bonding type

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The CH3XC=S...S (X = H, HO, HS, PH2, CH3) bonding types are investigated using the second order Møller-Plesset perturbation approximation with the cc-pVDZ basis set. Electrostatic density potential maps of CH3XC=S (X = H, HO, HS, PH2, CH3) are generated at the MP2/cc-pVDZ level of theory. The interaction energy and topological property are theoretically encompassed for the five complexes. Electrostatic density potential maps of five monomers are generated for the determination of attractive interaction sites. There are different misshaped electron clouds. The red-shifting character is obtained for the CH3XC=S...S (X = H, HO, HS, PH2) interaction. For all complexes the S...S bonds are typical closedshell interactions, and the topological properties of the S...S bond fall short of three criteria for the existence of the hydrogen bond. Theoretical values are in very good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Z. Wang, N. B. Wong, W. X. Zheng, et al., J. Phys. Chem. A, 108, 1799–1805 (2004).

    Article  CAS  Google Scholar 

  2. P. Metrangolo, H. Neukirch, T. Pilati, et al., Acc. Chem. Res., 38, 386–395 (2005).

    Article  CAS  Google Scholar 

  3. P. Metrangolo, T. Pilati, and G. Resnati, Cryst. Eng. Comm., 8, 946/947 (2006).

    Google Scholar 

  4. K. E. Riley and K. M. Merz, J. Phys. Chem. A,111, 1688–1694 (2007).

    Article  CAS  Google Scholar 

  5. P. Metrangolo, F. Meyer, T. Pilati, et al., Angew. Chem., Int. Ed., 47, 6114–6127 (2008).

    Article  CAS  Google Scholar 

  6. P. Metrangolo and G. Resnati, Science, 321, 918/919 (2008).

    Article  Google Scholar 

  7. P. Sanz, M. Yáñez, and O. Mó, J. Phys. Chem. A, 106, 4661–4668 (2002).

    Article  CAS  Google Scholar 

  8. D. B. Werz, R. Gleiter, and F. Rominger, J. Am. Chem. Soc., 124, 10638/10639 (2002).

    Article  Google Scholar 

  9. A. F. Cozzolino, I. Vargas-Baca, S. Mansour, et al., J. Am. Chem. Soc., 127, 3184–3190 (2005).

    Article  CAS  Google Scholar 

  10. C. Bleiholder, D. B. Werz, H. Köppel, et al., J. Am. Chem. Soc., 128, 2666–2674 (2006).

    Article  CAS  Google Scholar 

  11. C. Bleiholder, R. Gleiter, D. B. Werz, et al., Inorg. Chem., 46, 2249–2260 (2007).

    Article  CAS  Google Scholar 

  12. W. Z. Wang, B. M. Ji, and Y. Zhang, J. Phys. Chem. A, 113, 8132–8135 (2009).

    Article  Google Scholar 

  13. L. A. Walker, K. Folting, and L. L. Merritt Junior, Acta Crystallogr. Sect. B, 25, 88–93 (1969).

    Article  CAS  Google Scholar 

  14. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon, Oxford, UK (1990).

    Google Scholar 

  15. M. T. Carroll and R. F. W. Bader, Mol. Phys., 65, 695 (1988).

    Article  CAS  Google Scholar 

  16. U. Koch and P. Popelier, J. Phys. Chem., 99, 9747 (1995).

    Article  CAS  Google Scholar 

  17. W. Z. Wang, N. B. Wong, W. X. Zheng, et al., J. Phys. Chem. A, 108, 1799 (2004).

    Article  CAS  Google Scholar 

  18. B. Long, J. R. Cheng, X. F. Tan, et al., J. Mol. Struct. (Theochem.), 916, 159 (2009).

    Article  CAS  Google Scholar 

  19. T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).

    Article  CAS  Google Scholar 

  20. C. Möller and M. S. Plesset, Phys. Rev., 46, 618 (1934).

    Article  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA (2003).

  22. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).

    Article  CAS  Google Scholar 

  23. J. C. Lupez, J. L. Alonso, F. J. Lorenzo, et al., J. Chem. Phys., 111, 6363 (1999).

    Article  Google Scholar 

  24. S. W. Hunt and K. R. Leopold, J. Phys. Chem. A, 105, 5498 (2001).

    Article  CAS  Google Scholar 

  25. H. Valdvs and J. A. Sordo, J. Comput. Chem., 23, 444 (2002).

    Article  Google Scholar 

  26. H. Valdvs and J. A. Sordo, J. Phys. Chem. A, 106, 3690 (2002).

    Article  Google Scholar 

  27. P. L. A. Popelier, J. Phys. Chem. A, 102, 1873 (1998).

    Article  CAS  Google Scholar 

  28. A. Johansson, P. Kollman, and S. Rothenberg, Theor. Chim. Acta, 29, 167 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -Y. He.

Additional information

Original Russian Text Copyright © 2011 by J.-Y. He, Z.-W. Long, and J.-S. Zhang

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 6, pp. 1096–1100, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J.Y., Long, Z.W. & Zhang, J.S. Computational investigation of the CH3XC=S...S (X = H, HO, HS, PH2, CH3) bonding type. J Struct Chem 52, 1057–1062 (2011). https://doi.org/10.1134/S0022476611060035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611060035

Keywords

Navigation