Skip to main content
Log in

On the topology of the electron density of \({\mathrm {H}}_{3}^{+}\)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The topology of the electron density ρ(r) of \({\mathrm {H}}_{3}^{+}\) is revisited by series of ultra fine tuned geometry optimizations within Hartree-Fock self-consistent virial scaling (SCVS) approach in combination with correlation consistent cc-pVXZ basis sets. The calculations are extended to approach the Hartree-Fock complete basis set (CBS) limit. It is discussed that within such tuned ab initio calculations, the sources of errors that are mapped to the final density matrix in normal calculations are essentially eliminated. The results of electron density analysis on such error-free ρ(r) function via the quantum theory of atoms in molecules (QTAIM) confirm unambiguously the non-nuclear attractor (NNA) as the fundamental topological building block (together with three H atomic basins) to describe the bonding in \({\mathrm {H}}_{3}^{+}\) ion-molecule. The convergence patterns of the values of different density-dependent properties toward CBS limit are also explored. It is reported that the cc-pVXZ sets are not only energy-consistent but also density-consistent. Therefore, on the basis of this important density consistency behavior, the CBS limit values of different atomic and bonding indexes are estimated and ultimately the structure and bonding pattern of \({\mathrm {H}}_{3}^{+}\) are concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomson JJ (1911) Philos Mag 21:225–249

    Article  CAS  Google Scholar 

  2. Oka T (1980) Phys Rev Lett 45:531–534

    Article  CAS  Google Scholar 

  3. Kragh H (2010) Astron Geophys 51:6.25–6.27

    Article  Google Scholar 

  4. Bowers MT, Elleman DD, King Jr J (1969) J Chem Phys 50:4787–4804

  5. Watson WD (1973) Astrophys J 183:L17–L20

    Article  CAS  Google Scholar 

  6. Herbst E, Klemperer W (1973) Astrophys J 185:505–533

    Article  CAS  Google Scholar 

  7. Oka T (1992) Rev Mod Phys 64:1141–1149

    Article  CAS  Google Scholar 

  8. MacCall BJ, Oka T (2000) Science 287:1941–1942

    Article  Google Scholar 

  9. Geballe TR, Oka T (2006) Science 312:1610–1612

    Article  CAS  Google Scholar 

  10. Carney GD, Porter RN (1976) J Chem Phys 65:3547–3565

    Article  CAS  Google Scholar 

  11. Gaillard MJ, Gemmell DS, Goldring G, Levine I, Pietsch WJ, Poizat JC, Ratkowski AJ, Remillieux J, Vager Z, Zabransky BJ (1978) Phys Rev A 17:1797–1803

    Article  CAS  Google Scholar 

  12. Christoffersen RE, Shull H (1968) J Chem Phys 48:1790–1797

    Article  CAS  Google Scholar 

  13. Bader RFW, Nguyen-Dang TT, Tal Y (1979) J Chem Phys 70:4316–4329

    Article  CAS  Google Scholar 

  14. Sadjadi A, Abdzadeh M, Behnejad H (2004) J Chem Res May :58–359

  15. Cao WL, Gatti C, MacDougall PJ, Bader RWF (1987) Chem Phys Lett 141:380–385

    Article  CAS  Google Scholar 

  16. De Vries RY, Briels WJ, Feil D, Te Velde G, Bearends EJ (1996) Can J Chem 74:1054–1058

    Article  CAS  Google Scholar 

  17. Martin-Pendas A, Blanco MA, Costales A, Mori-Sanchez P, Launa V (1999) Phys Rev Lett 83:1930–1933

    Article  Google Scholar 

  18. Terrabuio LA, Teodoro TQ, Matta CF, Haiduke RLA (2016) J Phys Chem A 120:1168–1174

    Article  CAS  Google Scholar 

  19. Havenith RWA, De Proft F, Fowler PW, Geerlings P (2005) Chem Phys Lett 407:391–396

    Article  CAS  Google Scholar 

  20. Foroutan-Nejad C, Rashidi-Ranjbar P (2009) J Mol Struct : THEOCHEM 901:243–248

    Article  CAS  Google Scholar 

  21. Piris M, Matxain JM, Lopez X (2013) J Chem Phys 139:234109

    Article  CAS  Google Scholar 

  22. Bader RFW (1990) Atoms in molecules. Oxford University Press, New York

    Google Scholar 

  23. Frenking G, Krapp A (2007) J Comput Chem 28:15–24

    Article  CAS  Google Scholar 

  24. Harrison SW, Massa LJ, Solomon P (1973) Nature 245:31–32

    Article  CAS  Google Scholar 

  25. Clampitt R, Gowland L (1969) Nature 223:815–816

    Article  CAS  Google Scholar 

  26. Matta CF, Huang L, Mass LJ (2011) J Phys Chem A 115:12451–12458

    Article  CAS  Google Scholar 

  27. Sapse AM, Rayez-Meaume MT, Rayez JC, Massa LJ (1979) Nature 278:332–333

    Article  CAS  Google Scholar 

  28. Huang L, Matta CF, Mass LJ (2011) J Phys Chem A 115:12445–12450

    Article  CAS  Google Scholar 

  29. Matta CF (2010) J Comput Chem 31:1297–1311

    CAS  Google Scholar 

  30. Bader RWF, Bayles D (2000) J Phys Chem A 104:5579–5589

    Article  CAS  Google Scholar 

  31. Cortés-Guzmán F, Bader RFW (2003) Chem Phys Lett 379:183–192

    Article  Google Scholar 

  32. Matta CF, Sadjadi SA, Braden DA, Frenking G (2016) J Comput Chem 37:143–154

    Article  CAS  Google Scholar 

  33. Lehd M, Jensen F (1991) J Comput Chem 12:1089–1096

    Article  CAS  Google Scholar 

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  35. Keith TA (2017) TK Gristmill Software. Overland Park KS USA (aim.tkgristmill.com)

  36. Matta CF (2014) J Comput Chem 35:1165–1198

    Article  CAS  Google Scholar 

  37. Peterson KA (2007) Annu Rep Comput Chem 3:195–206

    Article  CAS  Google Scholar 

  38. Peterson KA, Woon DE, Dunning Jr TH (1994) J Comput Chem 100:7410–7415

  39. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  40. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Science 355:49–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I met Professor Lou Massa in computational chemistry workshop in Changsha (China) in 2012. I was in the final year of my Ph.D. study and I enjoyed very much his talk and warm and friendly discussions with him during the workshop. I would also like to thank the organizer of that workshop, Professors Samantha Jenkins and Steven Kirk.

One of the posters in that workshop that Lou was co-authored with Cherif Matta was about the molecular graph of different \({\mathrm {H}}_{n}^{+}\) clusters which I was also interested in them for a long time. Thus, I decided to draft this manuscript and dedicate to him.

I wish to thank valuable supports of Professor Sun Kwok, my supervisor, and Director of LSR. Also, I wish to thank my good friends and colleagues, Dr. Yong Zhang and Dr. Chih Hao Hsia.

Special thank to Professor Kirk A. Peterson for his unlimited supports with private communications/discussions on correlation consistent basis sets.

This research is conducted using the HKU Information Technology Services research computing facilities that are supported in part by the Hong Kong UGC Special Equipment Grant (SEG HKU09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeyedAbdolreza Sadjadi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 389 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, S. On the topology of the electron density of \({\mathrm {H}}_{3}^{+}\) . Struct Chem 28, 1445–1452 (2017). https://doi.org/10.1007/s11224-017-0986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0986-z

Keywords

Navigation