Skip to main content
Log in

Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Layered ternary carbides and nitrides of d and p elements exhibit a unique combination of properties characteristic of both metals and ceramics. This determines their high technological potential as materials for high-temperature ceramics, protective coatings, sensors, electrical contacts and also attracts attention to a detailed investigation of the nature of their properties. Along with remarkable achievements in the synthesis, studies of functional characteristics, and solutions of materials science problems, great progress in the description and prediction of fundamental physicochemical properties has recently been achieved with the use of first principle (ab initio) methods. By the example of titanium silicon carbide Ti3SiC2 (a prototype of the MAX phase family) the possibilities of current ab initio methods are considered for the analysis and prediction of structural, cohesive, mechanical properties, non-stoichiometry and doping effects, the description of electronic characteristics and features of the chemical bonding in nanolaminates. The data on the quantum chemical studies of the Ti3SiC2 surface states as well as its hypothetical nanotubular forms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 672 (1963).

    Article  CAS  Google Scholar 

  2. W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 844 (1963).

    Article  CAS  Google Scholar 

  3. W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 94, 1198 (1964).

    Article  Google Scholar 

  4. W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 95, 178 (1964).

    Article  CAS  Google Scholar 

  5. W. Jeitschko, H. Nowotny, and F. Benesovsy, Monatsh. Chem., 95, 1004 (1964).

    Article  CAS  Google Scholar 

  6. W. Jeitschko and H. Nowotny, Monatsh. Chem., 98, 329 (1967).

    Article  CAS  Google Scholar 

  7. H. Nowotny, Prog. Solid State Chem., 5, 27 (1971).

    Article  CAS  Google Scholar 

  8. J. J. Nickl, K. K. Schweitzer, and P. Luxenberg, J. Less Common Met., 26, 283 (1972).

    Article  Google Scholar 

  9. T. Goto and T. Hirai, Mat. Res. Bull., 22, 1195 (1987).

    Article  CAS  Google Scholar 

  10. M. W. Barsoum, Prog. Solid State Chem., 28, 201 (2000).

    Article  CAS  Google Scholar 

  11. H. B. Zhang, Y. W. Bao, and Y. C. Zhou, J. Mater Sci. Technol., 25, 1 (2009).

    Article  CAS  Google Scholar 

  12. J. Y. Wang and Y. C. Zhou, Annual Rev. Mater. Res., 39, 415 (2009).

    Article  CAS  Google Scholar 

  13. P. Eklund, M. Beckers, U. Jansson, et al., Thin Solid Films, 518, 1851 (2010).

    Article  CAS  Google Scholar 

  14. J. P. Palmquist, S. Li, P. O. Persson, et al., Phys. Rev., B70, 165401 (2004).

    Google Scholar 

  15. H. Hogberg, P. Eklund, J. Emmerlich, et al., J. Mater. Res., 20, 779 (2005).

    Article  CAS  Google Scholar 

  16. S. E. Lofland, J. D. Hettinger, T. Meehan, et al., Phys. Rev., B74, 174501 (2006).

    Google Scholar 

  17. A. D. Bortolozo, Z. Fisk, O. H. Sant’Anna, et al., Physica, C469, 256 (2009).

    Google Scholar 

  18. B. Holm, R. Ahuja, S. Li, and B. Johansson, J. Appl. Phys., 91, 9874 (2002).

    Article  CAS  Google Scholar 

  19. S. V. Halilov, D. J. Singh, and D. A. Papaconstantopoulos, Phys. Rev., B65, 174519 (2002).

    Google Scholar 

  20. I. R. Shein, V. G. Bamburov, and A. L. Ivanovskii, Dokl. Phys. Chem., 411, 317 (2006).

    Article  CAS  Google Scholar 

  21. M. B. Kanoun, S. Goumri-Said, and A. H. Reshak, Comput. Mater. Sci., 47, 491 (2009).

    Article  CAS  Google Scholar 

  22. Y. Medkour, A. Bouhemadou, and A. Roumili, Solid State Commun., 148, 459 (2008).

    Article  CAS  Google Scholar 

  23. I. R. Shein and A. L. Ivanovskii, Phys. Solid State, 51, 1608 (2009).

    Article  CAS  Google Scholar 

  24. A. L. Ivanovsky, D. L. Novikov, and G. P. Shveikin, Mendeleev Commun., No. 3, 90 (1995).

  25. A. L. Ivanovskii and N. I. Medvedeva, Mendeleev Commun., No. 1, 36 (1999).

  26. A. L. Ivanovskii and N. I. Medvedeva, Z. Neorg. Khim., 43, 462–428 (1998).

    Google Scholar 

  27. N. I. Medvedeva, D. L. Novikov, A. L. Ivanovsky, et al., Phys. Rev., B58, 16042 (1998).

    Google Scholar 

  28. A. L. Ivanovskii, Usp. Khim., 64, 499 (1995).

    Google Scholar 

  29. A. L. Ivanovskii, A. I. Gusev, and G. P. Shveikin, Quantum Chemistry in Materials Science. Ternary Carbides and Nitrides of Transition Metals and Elements of IIIb, IVb Subgroups [in Russian], UrO RAN, Ekaterinburg (1996).

    Google Scholar 

  30. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna (2001).

    Google Scholar 

  31. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996).

    Article  CAS  Google Scholar 

  32. G. Kresse and J. Furthmuller, Phys. Rev., B54, 11169 (1996).

    Google Scholar 

  33. G. Kresse and D. Joubert, Phys. Rev., B59, 1758 (1999).

    Google Scholar 

  34. M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., J. Phys., Condens. Matter., 14, 2717 (2002).

    Article  CAS  Google Scholar 

  35. V. J. Keast, S. Harris, and D. K. Smith, Phys. Rev., B80, 214113 (2009).

    Google Scholar 

  36. J. Y. Wang and Y. C. Zhou, J. Phys., Condens. Matter., 15, 1983 (2003).

    Article  CAS  Google Scholar 

  37. J. Y. Wang and Y. C. Zhou, Phys. Rev., B69, 144108 (2004).

    Google Scholar 

  38. R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Appl. Phys. Lett., 76, 2226 (2000).

    Article  CAS  Google Scholar 

  39. L. Chaput, G. Hug, P. Pecheur, and H. Scherrer, Phys. Rev., B75, 035107 (2007).

    Google Scholar 

  40. Y. C. Zhou, Z. M. Sun, X. H. Wang, and S. J. Chen, J. Phys., Condens. Matter., 13, 10001 (2001).

    Article  CAS  Google Scholar 

  41. Z. C. Wang, S. Tsukimoto, M. Saito, and Y. Ikuhara, Phys. Rev., B79, 045318 (2009).

    Google Scholar 

  42. F. D. Murnaghan, Proc. Nat. Acad. Sci. USA, 30, 244 (1944).

    Article  CAS  Google Scholar 

  43. H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Westwood, NJ.: Processing and Applications. Noyes Publ. (1996).

    Google Scholar 

  44. C. M. Fang, R. Ahuja, O. Eriksson, et al., Phys. Rev., B74, 054106 (2006).

    Google Scholar 

  45. E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements, McGraw-Hill, New York (1973).

    Google Scholar 

  46. M. J. Mehl, Phys. Rev., B47, 2493 (1993).

    Google Scholar 

  47. I. R. Shein, I. S. Kiiko, Yu. N. Makurin, et al., Fiz. Tverd. Tela, 49, 1015 (2007).

    Google Scholar 

  48. C. Kittel, Introduction to Solid State Physics, 5th ed., John. Wiley (1976).

  49. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford (1956).

    Google Scholar 

  50. W. Voigt, Lehrburch der Kristallphysik, Teubner, Leipzig (1928).

    Google Scholar 

  51. A. Reuss and Z. Angew, Math. Mech., 9, 49 (1929).

    CAS  Google Scholar 

  52. R. Hill, Proc. Phys. Soc. London, 65, 350 (1952).

    Google Scholar 

  53. S. F. Pugh, Phil. Mag., 45, 823 (1954).

    CAS  Google Scholar 

  54. P. Ravindran, L. Fast, P. A. Korzhavyi, et al., J. Appl. Phys., 84, 4891 (1998).

    Article  CAS  Google Scholar 

  55. V. Tvergaard and J. W. Hutchinson, J. Am. Chem. Soc., 71, 157 (1998).

    Google Scholar 

  56. X. Hao, Y. Xu, Z. Wu, et al., J. Alloys Comp., 453, 413–417 (2008).

    Article  CAS  Google Scholar 

  57. F. Peng, W. Peng, H. Fu, and X. Yang, Physica, B404, 3363 (2009).

    Google Scholar 

  58. J. Y. Wang, Y. C. Zhou, T. Liao, and Z. J. Lin, Appl. Phys. Lett., 89, 021917 (2006).

    Article  CAS  Google Scholar 

  59. N. I. Medvedeva, D. L. Novikov, A. L. Ivanovsky, et al., Phys. Rev., B58, 16042 (1998).

    Google Scholar 

  60. Z. M. Sun and Y. C. Zhou, Phys. Rev., B60, 1441 (1999).

    Google Scholar 

  61. Y. C. Zhou and Z. M. Sun, J. Phys., Cond. Matter., 12, L457–L462 (2000).

    Article  CAS  Google Scholar 

  62. M. Magnuson, J. P. Palmquist, M. Mattesini, et al., Phys. Rev., B72, 245101 (2005).

    Google Scholar 

  63. P. Eklund, C. Virojanadara, J. Emmerlich, et al., Phys. Rev., B74, 045417 (2006).

    Google Scholar 

  64. R. Ahuja, Z. Sun, and W. Luo, High Press. Res., 26, 127 (2006).

    Article  CAS  Google Scholar 

  65. W. Orellana, G. Gutierrez, E. Menendez-Proupin, et al., J. Phys. Chem. Solids, 67, 2149–2153 (2006).

    Article  CAS  Google Scholar 

  66. M. Y. Lv, Z. W. Chen, and R. P. Liu, Mater. Lett., 60, 538 (2006).

    Article  CAS  Google Scholar 

  67. J. Y. Wang and Y. C. Zhou, J. Phys., Condens. Matter., 15, 1983 (2003).

    Article  CAS  Google Scholar 

  68. J. P. Palmquist, S. Li, P. O. Persson, et al., Phys. Rev., B70, 165401 (2004).

    Google Scholar 

  69. J. Y. Wang and Y. C. Zhou, J Phys., Condens. Matter., 15, 5959 (2003).

    Article  CAS  Google Scholar 

  70. X. Xu, E. Wu, X. Du, et al., J. Phys. Chem. Solids., 69, 1356 (2008).

    Article  CAS  Google Scholar 

  71. H. Z. Zhang and S. Q. Wang, Acta Mater., 55, 4645 (2007).

    Article  CAS  Google Scholar 

  72. L. Chaput, G. Hug, P. Pecheur, and H. Scherrer, Phys. Rev., B71, 121104R (2005).

    Google Scholar 

  73. M. W. Barsoum, L. Farber, and T. El-Raghy, Metall. Mater. Trans., A34, 1727 (1999).

    Article  Google Scholar 

  74. M. W. Barsoum, A. Murugaiah, S. R. Kalidindi, and T. Zhen, Phys. Rev. Lett., 92, 255508 (2004).

    Article  CAS  Google Scholar 

  75. T. Zhen, M. W. Barsoum, S. R. Kalidindi, et al., Acta Mater., 53, 4963 (2005).

    Article  CAS  Google Scholar 

  76. Z. M. Sun, Z. F. Zhang, H. Hashimoto, and T. Abe, Mater. Trans., 43, 432 (2002).

    Article  CAS  Google Scholar 

  77. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, Mater. Lett., 57, 1295 (2003).

    Article  CAS  Google Scholar 

  78. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, Advanced Eng. Mater., 6, 980 (2004).

    Article  CAS  Google Scholar 

  79. B. J. Kooi, R. J. Poppen, N. J. Carvalho, et al., Acta Mater., 51, 2859 (2003).

    Article  CAS  Google Scholar 

  80. V. Vitek, Cryst. Latt. Def., 5, 1 (1974).

    CAS  Google Scholar 

  81. J. R. Rice and R. Thompson, Phil. Mag., 29, 73 (1973).

    Article  Google Scholar 

  82. Y. Sun, J. R. Rice, and L. Trushinovsky, Mater. Res. Soc. Symp. Proc., 231, 243 (1991).

    Article  Google Scholar 

  83. E. Kaxiras and M. S. Duesbery, Phys. Rev. Lett., 70, 3752 (1993).

    Article  CAS  Google Scholar 

  84. M. H. Yoo and C. L. Fu, Mater. Sci. Eng., A153, 470 (1993).

    Google Scholar 

  85. N. I. Medvedeva, O. N. Mryasov, Yu. N. Gornostyrev, et al., Phys. Rev., B54, 13506 (1996).

    Google Scholar 

  86. Yu. N. Gornostyrev, M. I. Katsnelson, N. I. Medvedeva, et al., Phys. Rev., B62, 7802 (2000).

    Google Scholar 

  87. N. I. Medvedeva and A. J. Freeman, Scripta Mater., 58, 671 (2008).

    Article  CAS  Google Scholar 

  88. N. I. Medvedeva and A. L. Ivanovskii, Deformatsiya i Razrushenie Materialov, 1, No. 1, 1 (2008).

    Google Scholar 

  89. J. R. Rice, J. Mech. Phys. Solids, 40, 239 (1992).

    Article  CAS  Google Scholar 

  90. K. S. Chan, Metall. Mater. Trans., 34A, 2315 (2003).

    Article  CAS  Google Scholar 

  91. A. N. Enyashin and A. L. Ivanovskii, Mater. Lett., 62, 663 (2008).

    Article  CAS  Google Scholar 

  92. A. N. Enyashin and A. L. Ivanovskii, Theor. Exp. Chem., 45, 98 (2009).

    Article  CAS  Google Scholar 

  93. A. L. Ivanovskii, Usp. Khim., 68, 119 (1999).

    Google Scholar 

  94. G. R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem. Int. Ed., 41, 2446 (2002).

    Article  CAS  Google Scholar 

  95. R. Tenne and G. Seifert, Annu. Rev. Mater., 39, 387–413 (2009).

    Article  CAS  Google Scholar 

  96. R. Tenne, M. Remškar, A. N. Enyashin, and G. Seifert, Top. Appl. Phys., 11, 631–671 (2008).

    Article  Google Scholar 

  97. G. Seifert, J. Phys. Chem., A111, 5609–5613 (2007).

    Google Scholar 

  98. A. N. Enyashin and A. L. Ivanovskii, Physica, E30, 164–168 (2005).

    Google Scholar 

  99. A. N. Enyashin and S. Gemming, Phys. Stat. Sol., B244, 3593–3600 (2007).

    Google Scholar 

  100. V. Y. Prinz, Microelect. Engin., 69, 466–475 (2003).

    Article  CAS  Google Scholar 

  101. J. Emmerlich, H. Hogberg, S. Sasvari, et al., J. Appl. Phys., 9, 4817–4826 (2004).

    Article  CAS  Google Scholar 

  102. H. Hogberg, L. Hultman, J. Emmerlich, et al., Surf. Sci., 62, 663–665 (2008).

    Google Scholar 

  103. T. Taguchi, H. Yamomoto, and S. Shamoto, J. Phys. Chem., C111, 18888–18891 (2007).

    Google Scholar 

  104. L. Shi, Y. Gu, L. Chen, et al., Carbon, 43, 195–213 (2005).

    Article  CAS  Google Scholar 

  105. J. In, K. Seo, S. Lee, et al., J. Phys. Chem., C113, 12996–13001 (2009).

    Google Scholar 

  106. S. W. Pol, V. G. Pol, and A. Gedanken, Adv. Mater., 18, 2023–2027 (2006).

    Article  CAS  Google Scholar 

  107. Z. Yang, Y. Gu, L. Chen, et al., Solid State Comm., 130, 347 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text Copyright © 2011 by N. I. Medvedeva, A. N. Enyashin, and A. L. Ivanovskii

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, No. 4, pp. 806–822, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedeva, N.I., Enyashin, A.N. & Ivanovskii, A.L. Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2 . J Struct Chem 52, 785 (2011). https://doi.org/10.1134/S0022476611040226

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1134/S0022476611040226

Keywords

Navigation