Skip to main content
Log in

Volume properties of a ternary system: Water-urea-amino acid. Dilute and concentrated solutions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Partial molar volumes \( \bar V_U^0 \) of amino acids in an aqueous urea solution are studied. For a saturated urea solution \( \bar V_U^0 \) equals the molar volume of the amino acid, therefore, in the saturated solution, the amino acid dissolves without changing the system volume. Hydrophobic effects are manifested in the volumetric characteristics only in dilute (<1 mol/kg) urea solutions. Within a three-layer hydration model, the numbers of amino acid hydration are found. By the example of alanine and leucine, it is shown that their decrease with increasing urea concentration is determined by a zwitterionic moiety and does not depend on the size of the hydrocarbon radical of the amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Korolev, J. Struct. Chem., 49, No. 4, 660–667 (2008).

    Article  CAS  Google Scholar 

  2. V. P. Korolev, J. Struct. Chem., 49, No. 4., 668–678 (2008).

    Article  CAS  Google Scholar 

  3. V. P. Korolev, D. V. Batov, N. L. Smirnova, and A. V. Kustov, J. Struct. Chem., 48, No. 4, 666–672 (2007).

    Article  CAS  Google Scholar 

  4. V. P. Korolev, J. Struct. Chem., 48, No. 4, 673–679 (2007).

    Article  CAS  Google Scholar 

  5. V. P. Korolev, D. V. Batov, and A. V. Kustov, Biofizika, 55, No. 2, 207–212 (2010).

    CAS  Google Scholar 

  6. T. Ogawa, M. Yasuda, and K. Mizutani, Bull. Chem. Soc. Jpn., 57, 662–666 (1984).

    Article  CAS  Google Scholar 

  7. A. K. Mishra, K. P. Prasad, and J. C. Ahluwalia, Biopolimers, 22, 2397–2409 (1983).

    Article  CAS  Google Scholar 

  8. C. Jolicoeur, B. Riedl, D. Desrochers, et al., J. Sol. Chem., 15, 109–128 (1986).

    Article  CAS  Google Scholar 

  9. A. W. Hakin, C. L. Beswick, and M. M. Duke, J. Chem. Soc. Faraday Trans., 92, 207–213 (1996).

    Article  CAS  Google Scholar 

  10. W. A. Hargraves and G. C. Kresheck, J. Phys. Chem., 73, 3249–3254 (1969).

    Article  CAS  Google Scholar 

  11. O. Enea and C. Jolicoeur, J. Phys. Chem., 86, 3870–3881 (1982).

    Article  CAS  Google Scholar 

  12. A. W. Hakin, L. L. Groft, J. L. Marty, and M. L. Rushfeldt, Can. J. Chem., 75, 456–464 (1997).

    Article  CAS  Google Scholar 

  13. N. Desrosiers, G. Perron, J. G. Mathieson, et al., J. Solut. Chem., 3, 789–806 (1974).

    Article  CAS  Google Scholar 

  14. G. Perron, N. Desrosiers, and J. E. Desnoyers, Can. J. Chem., 54, 2163–2183 (1976).

    Article  CAS  Google Scholar 

  15. B. S. Lark, and K. Bala, Indian J. Chem., 22A, 192–194 (1983).

    CAS  Google Scholar 

  16. P. K. Das Gupta and S. P. Moulik, J. Phys. Chem., 91, 5826–5832 (1987).

    Article  Google Scholar 

  17. I. S. Grigor’ev and E. Z. Meilikhov (eds.), in: Physical Values: Handbook [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  18. E. Berlin and M. J. Pallansch, J. Phys. Chem., 72, 1887–1889 (1968).

    Article  CAS  Google Scholar 

  19. E. J. Cohn, T. L. McMeekin, J. T. Edsall, and J. H. Weare, J. Am. Chem. Soc., 56, 2270–2282 (1934).

    Article  CAS  Google Scholar 

  20. Gy. Jakli and W. A. Van Hook, J. Phys.Chem., 85, 3480–3493 (1981).

    Article  CAS  Google Scholar 

  21. G. L. Perlovich, L. K. Hansen, and A. Bauer-Brandl, J. Therm. Anal. Calorim., 66, 699–715 (2001).

    Article  CAS  Google Scholar 

  22. B. Palecz, J. Am. Chem Soc., 127, 17768–17771 (2005).

    Article  CAS  Google Scholar 

  23. Y. Pointud and J. Juillard, J. Chem. Soc. Faraday Trans. I, 73, 1048–1053 (1977).

    Article  CAS  Google Scholar 

  24. M. Abu-Hamdiyyah and A. Shehabuddin, J. Chem. Eng. Data, 27, 74–76 (1982).

    Article  CAS  Google Scholar 

  25. F. J. Millero, A. Lo Surdo, and C. Shin, J. Phys. Chem., 82, 784–792 (1978).

    Article  CAS  Google Scholar 

  26. J. V. Leyendekkers, J. Phys. Chem., 90, 5449–5455 (1986).

    Article  CAS  Google Scholar 

  27. J. G. Mathieson and B. E. Conway, J. Sol. Chem., 3, 781–788 (1974).

    Article  CAS  Google Scholar 

  28. K. P. Mishchenko and G. M. Poltoratskii, Thermodynamics and the Structure of Aqueous and Non-Aqueous Electrolyte Solutions [in Russian], 20th ed., Khimiya, Leningrad (1976).

    Google Scholar 

  29. T. S. Sarma and J. C. Ahluwalia, J. Phys. Chem., 76, 1366–1369 (1972).

    Article  CAS  Google Scholar 

  30. V. P. Korolev, J. Struct. Chem., 51, No. 3, 491–499 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Korolev.

Additional information

Original Russian Text Copyright © 2011 by V. P. Korolev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, No. 1, pp. 101–109, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, V.P. Volume properties of a ternary system: Water-urea-amino acid. Dilute and concentrated solutions. J Struct Chem 52, 97–105 (2011). https://doi.org/10.1134/S0022476611010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611010136

Keywords

Navigation