Skip to main content
Log in

Event-related Potentials in Cued Go/NoGo Task Are Possible Neuromarkers of Monotony

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Monotony or mental fatigue occurs during performing low-content and monotonous work, including the work of the operator. It is accompanied by a decrease in the concentration of attention and the speed of its switching, as well as slowing in the processes of perception and motor reactions, which can lead to a loss of vigilance, self-control and the occurrence of drowsiness and, consequently, an increase in the risk of industrial injuries and accidents. In this regard, an urgent task is to develop methods for monitoring the human condition in the process of performing monotonous activities. We investigated the effect of monotony on event-related potentials (ERPs) in the visual cued Go/NoGo test. We analyzed 31-channel EEG data of 25 healthy subjects recorded before and after performing four tests with a total duration of around 1.5 hours, representing the same type of tasks with different instructions and simulating the conditions of monotonous work. After performing four tests, we observe an increase of P2 wave, decrease of the P3 Cue wave and the contingent negative variation (CNV) wave in the Cue condition, as well as the decrease of P300 wave in the NoGo condition. The results obtained in this work are assumed to reflect attenuation in proactive and reactive cognitive control during monotony and allow us to consider the P2, P3 Cue, CNV and P3 NoGo waves as possible candidates for the role of neuromarkers of monotony, which makes it promising to use these indicators in systems for monitoring the human condition during operating work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Leonova AB (1984) Psychodiagnostics of human functional states. Moscow Univer Press, M. (In Russ).

    Google Scholar 

  2. Hu X, Lodewijks G (2020) Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. J Safety Res 72: 173–187. https://doi.org/10.1016/j.jsr.2019.12.015

    Article  PubMed  Google Scholar 

  3. May JF, Baldwin CL (2009) Driver fatigue: The importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transport Res Part F: Traffic Psychol Behav 12(3): 218–224. https://doi.org/10.1016/j.trf.2008.11.005

    Article  Google Scholar 

  4. Williamson A, Lombardi DA, Folkard S, Stutts J, Courtney TK, Connor JL (2011) The link between fatigue and safety. Accid Anal Prevent 43: 498–515. https://doi.org/10.1016/j.aap.2009.11.011

    Article  Google Scholar 

  5. Zhang Y, Ma J, Zhang C, Chang R (2021) Electrophysiological frequency domain analysis of driver passive fatigue under automated driving conditions. Scient Rep 11: 20348. https://doi.org/10.1038/s41598-021-99680-4

    Article  CAS  Google Scholar 

  6. Wascher E, Heppner H, Kobald SO, Arnau S, Getzmann S, Möckel T (2016) Age-Sensitive Effects of Enduring Work with Alternating Cognitive and Physical Load. A Study Applying Mobile EEG in a Real Life Working Scenario. Front Hum Neurosci 9: 711. https://doi.org/10.3389/fnhum.2015.00711

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wascher E, Getzmann S, Karthaus M (2016) Driver state examination—Treading new paths. Accid Anal Prev 91: 157–165. https://doi.org/10.1016/j.aap.2016.02.029

    Article  PubMed  Google Scholar 

  8. Tanaka M, Shigihara Y, Ishii A, Funakura M, Kanai E, Watanabe Y (2012) Effect of mental fatigue on the central nervous system: An electroencephalography study. Behav Brain Funct 8(1): 48. https://doi.org/10.1186/1744-9081-8-48

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahn S, Nguyen T, Jang H, Kim JG, Jun SC (2016) Exploring neurophysiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Front Human Neurosci 10: 219. https://doi.org/10.3389/fnhum.2016.00219

    Article  Google Scholar 

  10. Kiroy VN, Aslanyan EV (2005) General patterns of formation of the state of monotony. J Higher Nerv Activ 55 (6): 768–776. (In Russ).

    Google Scholar 

  11. Lebedeva NN, Karimova ED (2014) Neurophysiological manifestations of the state of monotony in operators with different interhemispheric asymmetry of alpha activity. J Higher Nerv Activ 64 (4): 428. (In Russ).

    CAS  Google Scholar 

  12. Wang C, Li B, Yao Y (2021) Proactive Control Mediates the Relationship Between Working Memory and Math Ability in Early Childhood. Front Psychol 12: 611429. https://doi.org/10.3389/fpsyg.2021.611429

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kropotov JD, Pronina MV, Ponomarev VA, Poliakov YI, Plotnikova IV, Mueller A (2019) Latent ERP components of cognitive dysfunctions in ADHD and schizophrenia. Clin Neurophysiol 130(4): 445–453. https://doi.org/10.1016/j.clinph.2019.01.015

    Article  PubMed  Google Scholar 

  14. Kropotov J, Ponomarev V, Tereshchenko EP, Müller A, Jäncke L (2016) Effect of Aging on ERP Components of Cognitive Control. Front Aging Neurosci 8: 69. https://doi.org/10.3389/fnagi.2016.00069

    Article  PubMed  PubMed Central  Google Scholar 

  15. Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16(2): 106–113. https://doi.org/10.1016/j.tics.2011.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  16. Näätänen R, Picton TW (1986) N2 and automatic versus controlled processes. Electroencephal Clin Neurophysiol Suppl 38: 169–186.

    Google Scholar 

  17. Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent Negative Variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature (Lond) 203: 380.

  18. Bekker EM, Kenemans JL,Verbaten MN (2004) Electrophysiological correlates ofattention, inhibition, sensitivity and bias in a continuous performance task. Clin Neurophysiol 115: 2001–2013.

    Article  CAS  PubMed  Google Scholar 

  19. Verleger R (2020) Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology 57(7): e13542. https://doi.org/10.1111/psyp.13542

    Article  PubMed  Google Scholar 

  20. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1): 65–94. https://doi.org/10.1037/0033-2909.121.1.65

    Article  PubMed  Google Scholar 

  21. van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77(4–5): 477–482. https://doi.org/10.1016/s0031-9384(02)00930-7

    Article  CAS  PubMed  Google Scholar 

  22. Boksem MA, Meijman TF, Lorist MM (2006) Mental fatigue, motivation and action monitoring Biol Psychol 72(2): 123–132. https://doi.org/10.1016/j.biopsycho.2005.08.007

  23. Lorist MM (2008) Impact of top-down control during mental fatigue. Brain Res 1232: 113–123. https://doi.org/10.1016/j.brainres.2008.07.053

    Article  CAS  PubMed  Google Scholar 

  24. Käthner I, Wriessnegger SC, Müller-Putz GR, Kübler A, Halder S (2014) Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol 102: 118–129. https://doi.org/10.1016/j.biopsycho.2014.07.014

    Article  PubMed  Google Scholar 

  25. Jia H, Lin CJ, Wang EM (2022) Effects of mental fatigue on risk preference and feedback processing in risk decision-making. Sci Rep 12: 10695. https://doi.org/10.1038/s41598-022-14682-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serikov VV, Oboznov AA, Kolyagin VYa, Zakrevskaya AA (2018) The use of cognitive evoked potential P-300 to assess the work of the brain of machinists. Organizat Psychol and Psychol Work 3(2): 166–182. (In Russ).

    Google Scholar 

  27. Takács E, Barkaszi I, Altbäcker A, Czigler I, Balázs L (2019) Cognitive resilience after prolonged task performance: an ERP investigation. Exp Brain Res 237(2): 377–388. https://doi.org/10.1007/s00221-018-5427-8

    Article  PubMed  Google Scholar 

  28. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1): 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024

    Article  PubMed  Google Scholar 

  29. Reteig LC, van den Brink RL, Prinssen S, Cohen MX, Slagter HA (2019) Sustaining attention for a prolonged period of time increases temporal variability in cortical responses. Cortex 117: 16–32. https://doi.org/10.1016/j.cortex.2019.02.016

    Article  PubMed  Google Scholar 

  30. Albrecht B, Brandeis D, Uebel-von Sandersleben H, Valko L, Heinrich H, Xu X, Drechsler R, Heise A, Kuntsi J, Müller UC, Asherson P, Steinhausen HC, Rothenberger A, Banaschewski T (2014) Genetics of preparation and response control in ADHD: the role of DRD4 and DAT1. J Child Psychol Psychiatry 55(8): 914–923. https://doi.org/10.1111/jcpp.12212

    Article  PubMed  Google Scholar 

  31. Grane VA, Brunner JF, Endestad T, Aasen IES, Kropotov J, Knight RT, Solbakk AK (2016) ERP Correlates of Proactive and Reactive Cognitive Control in Treatment-Naïve Adult ADHD. PLoS One 11(7): e0159833. https://doi.org/10.1371/journal.pone.0159833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elke S, Wiebe SA (2017) Proactive control in early and middle childhood: An ERP study. Dev Cogn Neurosci 26: 28–38. https://doi.org/10.1016/j.dcn.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rêgo GG, Gonçalves ÓF, Boggio PS (2022) Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 12(1): 17613. https://doi.org/10.1038/s41598-022-22245-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rohrbaugh JW, McCallum WC, Gaillard AW, Simons RF, Birbaumer N, Papakostopoulos D (1986) ERPs associated with preparatory and movement-related processes. A review. Electroencephal Clin Neurophysiol Suppl 38: 189–229.

    CAS  Google Scholar 

  35. Aydin M, Carpenelli AL, Lucia S, Di Russo F (2022) The Dominance of Anticipatory Prefrontal Activity in Uncued Sensory-Motor Tasks. Sensors (Basel) 22(17): 6559. https://doi.org/10.3390/s22176559

  36. Kóbor A, Kardos Z, Horváth K, Janacsek K, Takács Á, Csépe V, Nemeth D (2021) Implicit anticipation of probabilistic regularities: Larger CNV emerges for unpredictable events. Neuropsychologia 156: 107826. https://doi.org/10.1016/j.neuropsychologia.2021.107826

    Article  PubMed  Google Scholar 

  37. Wu Y, Ma S, He X, Xiang S, Qi S (2021) Trait anxiety modulates the temporal dynamics of Stroop task switching: An ERP study. Biol Psychol 163: 108144. https://doi.org/10.1016/j.biopsycho.2021.108144

    Article  PubMed  Google Scholar 

  38. Osborne KJ, Kraus B, Lam PH, Vargas T, Mittal VA (2020) Contingent Negative Variation Blunting and Psychomotor Dysfunction in Schizophrenia: A Systematic Review. Schizophr Bull 46(5): 1144–1154. https://doi.org/10.1093/schbul/sbaa043

    Article  PubMed  PubMed Central  Google Scholar 

  39. Catalano LT, Wynn JK, Green MF, Gold JM (2022) Reduced neural activity when anticipating social versus nonsocial rewards in schizophrenia: Preliminary evidence from an ERP study. Schizophr Res 246: 7–16. https://doi.org/10.1016/j.schres.2022.05.028

    Article  PubMed  Google Scholar 

  40. Hohnsbein J, Falkenstein M, Hoormann J (1998) Performance differences in reaction tasks are reflected in event-related brain potentials (ERPs). Ergonomics 41(5): 622–633. https://doi.org/10.1080/001401398186793

    Article  CAS  PubMed  Google Scholar 

  41. Aasen IE, Brunner JF (2016) Modulation of ERP components by task instructions in a cued go/no-go task. Psychophysiology 53(2): 171–185. https://doi.org/10.1111/psyp.12563

    Article  PubMed  Google Scholar 

  42. Finnigan S, O’Connell RG, Cummins TDR, Broughton M, Robertson IH (2011) ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology 48: 601–611. https://doi.org/10.1111/j.1469-8986.2010.01128.x

    Article  PubMed  Google Scholar 

  43. Freunberger R, Klimesch W, Doppelmayr M, Höller Y (2007) Visual P2 component is related to theta phase-locking. Neurosci Lett 426: 181–186. doi: 10.1016/j.neulet.2007.08.062

    Article  CAS  PubMed  Google Scholar 

  44. Cepeda-Freyre HA, Garcia-Aguilar G, Eguibar JR, Cortes C (2020) Brain Processing of Complex Geometric Forms in a Visual Memory Task Increases P2 Amplitude. Brain Sci 10(2): 114. https://doi.org/10.3390/brainsci10020114

    Article  PubMed  PubMed Central  Google Scholar 

  45. Male AG, O’Shea RP (2023) Attention is required for canonical brain signature of prediction error despite early encoding of the stimuli. PLoS Biol 21(6): e3001866. https://doi.org/10.1371/journal.pbio.3001866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun L, Guo Z, Yuan X, Wang X, Su C, Jiang J, Li X (2022) An Investigation of the Effects of Brain Fatigue on the Sustained Attention of Intelligent Coal Mine VDT Operators. Int J Environ Res Public Health 19(17): 11034. https://doi.org/10.3390/ijerph191711034

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112(12): 2224–2232. https://doi.org/10.1016/s1388-2457(01)00691-5

    Article  CAS  PubMed  Google Scholar 

  48. Wessel JR, Aron AR (2014) It’s not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology 52: 472–480. https://doi.org/10.1111/psyp.12374

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013) Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int J Psychophysiol 87: 217–233. https://doi.org/10.1016/j.ijpsycho.2012.08.001

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation by the Agreement no. 075-15-2022-291 dated 15.04.2022 on the provision of a grant in the form of subsidies from the federal budget for the implementation of state support for the establishment and development of the world-class scientific center «Pavlov center «Integrative physiology for medicine, high-tech healthcare, and stress-resilience technologies».

Author information

Authors and Affiliations

Authors

Contributions

Idea of work, experiment planning, test design (authors M.V.P., M.G.S., Y.A.B., Y.A.Sh., A.A.B., G.V.K., and J.D.K.), data collection (M.V.P., M.G.S., Y.A.B.), data processing (M.V.P., M.G.S., Y.G.Kh.), manuscript writing and editing (M.V.P., M.G.S., Y.A.B., Y.G.Kh, Y.A.Sh., A.A.B., G.V.K., and J.D.K.).

Corresponding author

Correspondence to M. V. Pronina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in the study with human participants conformed to the ethical standards of the national research ethics committee and the 1964 Declaration of Helsinki and its subsequent revisions or comparable ethical standards. The Ethics Committee approved the study procedure, before the study, subjects signed an informed consent to participate in the study and filled out a brief questionnaire with health data.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 12, pp. 1935–1951https://doi.org/10.31857/S0869813923120087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, M.V., Starchenko, M.G., Boytsova, Y.A. et al. Event-related Potentials in Cued Go/NoGo Task Are Possible Neuromarkers of Monotony. J Evol Biochem Phys 59, 2367–2380 (2023). https://doi.org/10.1134/S0022093023060376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060376

Keywords:

Navigation