Skip to main content
Log in

Effects of Omecamtiv Mecarbil on the Tension–Length Loop and Work in Right Ventricular Trabeculae from Rats with Pulmonary Heart Failure

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Omecamtiv mecarbil (OM) is a selective cardiac myosin activator. We studied the effects of OM on the characteristics of contractility under mechanical loads of right ventricular trabeculae in control group rats and rats with monocrotaline-induced pulmonary heart failure. Right ventricular hypertrophy was accompanied by an increase in phosphorylation of cardiac myosin-binding protein C (cMyBP-C), troponin T, and troponin I and a decrease in phosphorylation of myosin regulatory light chain. We studied the OM effect in concentrations of 0.2 µM and 1 µM on the “tension–length” loop and the work amount in the intact trabeculae obtained in a physiological contraction mode. To study the OM effect on actin-myosin interaction we analyzed the dependence of the sliding velocities of F-actin and native thin filaments over myosin in an in vitro motility assay on the OM concentrations. The OM effects on the characteristics of contraction of trabeculae from control rats and rats with pulmonary heart failure were different. In the intact rats, OM dose-dependently reduced the work amount of rat trabeculae, but in the rats with pulmonary heart failure, 0.2 µM OM increased it by 8.5 ± 8.7% (p < 0.05, U-test) at 0.5 P/P 0. These differences in the OM effects are explained by an increase in phosphorylation of cMyBP-C and TnI during right ventricular hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Teerlink JR (2009) A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev 14: 289–298. https://doi.org/10.1007/s10741-009-9135-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Teerlink JR, Metra M, Zacà V, Sabbah HN, Cotter G, Gheorghiade M, Cas LD (2009) Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond. Heart Fail Rev 14: 243–253. https://doi.org/10.1007/s10741-009-9153-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasenfuss G, Teerlink JR (2011) Cardiac inotropes: current agents and future directions. Eur Heart J 32: 1838–1845. https://doi.org/10.1093/eurheartj/ehr026

    Article  CAS  PubMed  Google Scholar 

  4. Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM, Escandon RD, Elliott L, Bee R, Habibzadeh MR, Goldman JH, Schiller NB, Malik FI, Wolff AA (2011) Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378: 667–675. https://doi.org/10.1016/S0140-6736(11)61219-1

    Article  CAS  PubMed  Google Scholar 

  5. Bakkehaug JP, Kildal AB, Engstad ET, Boardman N, Næsheim T, Rønning L, Aasum E, Larsen TS, Myrmel T, How O-J (2015) Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity. Circ Heart Fail 8: 766–775. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002152

    Article  CAS  PubMed  Google Scholar 

  6. Meijs MFL, Asselbergs FW, Doevendans PA (2012) Omecamtiv mecarbil: a promising new drug in systolic heart failure. Eur J Heart Fail 14: 232–233. https://doi.org/10.1093/eurjhf/hfr178

    Article  CAS  PubMed  Google Scholar 

  7. Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A (2017) Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat Commun 8: 190. https://doi.org/10.1038/s41467-017-00176-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC, Previs MJ, Campbell KS, Yengo CM (2017) Omecamtiv Mecarbil Enhances the Duty Ratio of Human β-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle. J Biol Chem 292: 3768–3778. https://doi.org/10.1074/jbc.M116.748780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakanishi T, Oyama K, Tanaka H, Kobirumaki-Shimozawa F, Ishii S, Terui T, Ishiwata S, Fukuda N (2022) Effects of omecamtiv mecarbil on the contractile properties of skinned porcine left atrial and ventricular muscles. Front Physiol 13: 947206. https://doi.org/10.3389/fphys.2022.947206

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biering-Sørensen T, Minamisawa M, Liu J, Claggett B, Papolos AI, Felker GM, McMurray JJV, Legg JC, Malik FI, Honarpour N, Kurtz CE, Teerlink JR, Solomon SD (2021) The effect of the cardiac myosin activator, omecamtiv mecarbil, on right ventricular structure and function in chronic systolic heart failure (COSMIC-HF). Eur J Heart Fail 23: 1052–1056. https://doi.org/10.1002/ejhf.2181

    Article  PubMed  Google Scholar 

  11. Lookin O, Kuznetsov D, Protsenko Y (2022) Omecamtiv mecarbil attenuates length-tension relationship in healthy rat myocardium and preserves it in monocrotaline-induced pulmonary heart failure. Clin Exp Pharmacol Physiol 49: 84–93. https://doi.org/10.1111/1440-1681.13584

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher S, Maddock H, James RS, Wallis R, Gharanei M (2020) The cardiac work-loop technique: An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles. Sci Rep 10: 5258. https://doi.org/10.1038/s41598-020-58935-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fowler E, Drinkhill M, Wüst R, Helmes M, Stienen G, Steele D, White E (2015) Workloop Contractions in Isolated Cardiac Myocytes Reflect in vivo Pressure-Volume Dysfunction in Rat Right Heart Failure. Biophysical Journal 108: 294a. https://doi.org/10.1016/j.bpj.2014.11.1600

    Article  Google Scholar 

  14. Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 218: 105–149. https://doi.org/10.1007/978-3-642-38664-0_5

    Article  CAS  PubMed  Google Scholar 

  15. Power AS, Norman R, Jones TLM, Hickey AJ, Ward M-L (2019) Mitochondrial function remains impaired in the hypertrophied right ventricle of pulmonary hypertensive rats following short duration metoprolol treatment. PLoS One 14: e0214740. https://doi.org/10.1371/journal.pone.0214740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao G, Wang T, Zhuang W, Ye C, Luo L, Wang H, Lian G, Xie L (2020) RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways. Aging (Albany NY) 12: 4953–4969. https://doi.org/10.18632/aging.102922

  17. Lookin O, Balakin A, Kuznetsov D, Protsenko Y (2015) The length-dependent activation of contraction is equally impaired in impuberal male and female rats in monocrotaline-induced right ventricular failure. Clin Exp Pharmacol Physiol 42: 1198–1206. https://doi.org/10.1111/1440-1681.12471

    Article  CAS  PubMed  Google Scholar 

  18. Balakin A, Kuznetsov D, Protsenko Y (2018) The phenomena of mechanical interaction of segments of hypertrophied myocardium. Prog Biophys Mol Biol 133: 20–26. https://doi.org/10.1016/j.pbiomolbio.2017.10.002

    Article  PubMed  Google Scholar 

  19. Protsenko YL, Kuznetsov DA, Lisin RV, Lukin ON, Balakin AA (2018) Effect of Calcium on Slow Force Responses in Isolated Right Ventricle Preparations of Healthy and Hypertrophied Myocardium in Male and Female Rats. Bull Exp Biol Med 165: 315–318. https://doi.org/10.1007/s10517-018-4158-y

    Article  CAS  PubMed  Google Scholar 

  20. Greenberg BH, Chou W, Saikali KG, Escandón R, Lee JH, Chen MM, Treshkur T, Megreladze I, Wasserman SM, Eisenberg P, Malik FI, Wolff AA, Shaburishvili T (2015) Safety and tolerability of omecamtiv mecarbil during exercise in patients with ischemic cardiomyopathy and angina. JACC Heart Fail 3: 22–29. https://doi.org/10.1016/j.jchf.2014.07.009

    Article  PubMed  Google Scholar 

  21. Mamidi R, Li J, Gresham KS, Verma S, Doh CY, Li A, Lal S, Dos Remedios CG, Stelzer JE (2017) Dose-Dependent Effects of the Myosin Activator Omecamtiv Mecarbil on Cross-Bridge Behavior and Force Generation in Failing Human Myocardium. Circ Heart Fail 10: e004257. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85 (Pt B): 55–71. https://doi.org/10.1016/0076-6879(82)85009-x

    Article  CAS  PubMed  Google Scholar 

  23. Spiess M, Steinmetz MO, Mandinova A, Wolpensinger B, Aebi U, Atar D (1999) Isolation, Electron Microscopic Imaging, and 3-D Visualization of Native Cardiac Thin Myofilaments. Journal of Structural Biology 126: 98–104. https://doi.org/10.1006/jsbi.1999.4111

    Article  CAS  PubMed  Google Scholar 

  24. Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol 274: H1048–H1053. https://doi.org/10.1152/ajpheart.1998.274.3.H1048

    Article  CAS  PubMed  Google Scholar 

  25. Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Cell Biol 24: 271–289. https://doi.org/10.1016/s0091-679x(08)60661-5

    Article  CAS  PubMed  Google Scholar 

  26. Shchepkin DV, Nabiev SR, Nikitina LV, Kochurova AM, Berg VY, Bershitsky SY, Kopylova GV (2020) Myosin from the ventricle is more sensitive to omecamtiv mecarbil than myosin from the atrium. Biochem Biophys Res Commun 528: 658–663. https://doi.org/10.1016/j.bbrc.2020.05.108

    Article  CAS  PubMed  Google Scholar 

  27. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92: 2199–2211. https://doi.org/10.1529/biophysj.106.081117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teerlink J, Díaz R, Felker G, Mcmurray J, Metra M, Solomon S, Adams K, Anand I, Mendoza A, Biering-Sørensen T, Böhm M, Bonderman D, Cleland J, Corbalan R, Crespo-Leiro M, Dahlstrom U, Echeverría L, Fang J, Filippatos G, Kurtz C (2020) Omecamtiv Mecarbil in Chronic Heart Failure with Reduced Ejection Fraction, GALACTIC-HF: Baseline Characteristics and Comparison with Contemporary Clinical Trials. European journal of heart failure 22 (11): 2160–2171 . https://doi.org/10.1002/ejhf.2015

    Article  CAS  PubMed  Google Scholar 

  29. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, Legg JC, Büchele G, Varin C, Kurtz CE, Malik FI, Honarpour N (2020) Omecamtiv Mecarbil in Chronic Heart Failure With Reduced Ejection Fraction: Rationale and Design of GALACTIC-HF. JACC Heart Fail 8: 329–340. https://doi.org/10.1016/j.jchf.2019.12.001

    Article  PubMed  Google Scholar 

  30. Morioka S, Honda M, Ishikawa S, Ishinaga Y, Yano S, Tanaka K, Moriyama K (1992) Changes in Contractile and Non-Contractile Proteins, Intracellular Ca2+ and Ultrastructures During The Development of Right Ventricular Hypertrophy and Failure in Rats. Japanese circulation journal 56: 469–74. https://doi.org/10.1253/jcj.56.469

    Article  CAS  PubMed  Google Scholar 

  31. Korstjens IJM, Rouws CHFC, van der Laarse WJ, Van der Zee L, Stienen GJM (2002) Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscle Res Cell Motil 23: 93–102. https://doi.org/10.1023/a:1019988815436

    Article  CAS  PubMed  Google Scholar 

  32. Lamberts R, Hamdani N, Soekhoe T, Boontje N, Zaremba R, Walker L, de Tombe P, van der Velden J, Stienen G (2007) Frequency-dependent Ca2+-desensitization in failing rat hearts. The Journal of physiology 582: 695–709. https://doi.org/10.1113/jphysiol.2007.134486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Velden J, Papp Z, Zaremba R, Boontje N, Jong J, Owen V, Burton P, Goldmann P, Jaquet K, Stienen G (2003) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovascular research 57: 37–47. https://doi.org/10.1016/S0008-6363(02)00606-5

    Article  PubMed  Google Scholar 

  34. Messer A, Jacques A, Marston S (2007) Troponin phosphorylation and regulatory function in human heart muscle: Dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. Journal of molecular and cellular cardiology 42: 247–59. https://doi.org/10.1016/j.yjmcc.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  35. Belin R, Sumandea M, Sievert G, Harvey L, Geenen D, Solaro R, de Tombe P (2011) Interventricular differences in myofilament function in experimental congestive heart failure. Pflügers Archiv : European journal of physiology 462: 795–809. https://doi.org/10.1007/s00424-011-1024-4

    Article  CAS  PubMed  Google Scholar 

  36. Kameyama T, Chen Z, Bell S, VanBuren P, Maughan D, LeWinter M (1998) Mechanoenergetic Alterations During the Transition From Cardiac Hypertrophy to Failure in Dahl Salt-Sensitive Rats. Circulation 98: 2919–29. https://doi.org/10.1161/01.CIR.98.25.2919

    Article  CAS  PubMed  Google Scholar 

  37. Noguchi T, Kihara Y, Begin K, Gorga J, Littlefield K, LeWinter M, VanBuren P (2003) Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: amelioration by endothelin blockade. Circulation 107: 630–635.

    Article  CAS  PubMed  Google Scholar 

  38. Dubois-Deruy E, Richard V, Mulder P, Lamblin N, Drobecq H, Henry J-P, Amouyel P, Thuillez C, Bauters C, Pinet F (2010) Decreased Serine(207) phosphorylation of troponin T as a biomarker for left ventricular remodelling after myocardial infarction. European heart journal 32: 115–123. https://doi.org/10.1093/eurheartj/ehq108

    Article  CAS  Google Scholar 

  39. Hamdani N, Waard M, Messer A, Boontje N, Kooij V, van Dijk S, Versteilen A, Lamberts R, Merkus D, dos Remedios C, Duncker D, Borbély A, Papp Z, Paulus J, Stienen G, Marston S, van der Velden J (2009) Myofilament dysfunction in cardiac disease from mice to men. Journal of muscle research and cell motility 29: 189–201. https://doi.org/10.1007/s10974-008-9160-y

    Article  CAS  Google Scholar 

  40. Marston S, de Tombe P (2008) Troponin phosphorylation and myofilament Ca2+-sensitivity in heart failure: Increased or decreased? Journal of molecular and cellular cardiology 45: 603–7. https://doi.org/10.1016/j.yjmcc.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toepfer C, Caorsi V, Kampourakis T, Sikkel M, West T, Leung M-C, Al-Saud S, Macleod K, Lyon A, Marston S, Sellers J, Ferenczi M (2013) Myosin Regulatory Light Chain (RLC) Phosphorylation Change as a Modulator of Cardiac Muscle Contraction in Disease. The Journal of biological chemistry 104: 455444. https://doi.org/10.1074/jbc.M113.455444

    Article  CAS  Google Scholar 

  42. Markandran K, Yu H, Song W, Lam D, Madathummal M, Ferenczi M (2021) Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function. International Journal of Molecular Sciences 23: 88. https://doi.org/10.3390/ijms23010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadayappan S, Osinska H, Klevitsky R, Lorenz J, Sargent M, Molkentin J, Seidman C, Seidman J, Robbins J (2006) Cardiac myosin binding protein C phosphorylation is cardioprotective. Proceedings of the National Academy of Sciences of the United States of America 103: 16918–23. https://doi.org/10.1073/pnas.0607069103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar M, Govindan S, Zhang M, Khairallah R, Martin J, Sadayappan S, de Tombe P (2015) Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation. Journal of Biological Chemistry 290(49): 29241–29249. https://doi.org/10.1074/jbc.M115.686790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winkelmann DA, Forgacs E, Miller MT, Stock AM (2015) Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat Commun 6: 7974. https://doi.org/10.1038/ncomms8974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E (2015) Omecamtiv Mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin. Biochemistry 54: 1963–1975. https://doi.org/10.1021/bi5015166

    Article  CAS  PubMed  Google Scholar 

  47. Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM (2018) Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat Commun 9: 3838. https://doi.org/10.1038/s41467-018-06193-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kopylova GV, Shchepkin DV, Nabiev SR, Matyushenko AM, Koubassova NA, Levitsky DI, Bershitsky SY (2019) Cardiomyopathy-associated mutations in tropomyosin differently affect actin-myosin interaction at single-molecule and ensemble levels. J Muscle Res Cell Motil 40: 299–308. https://doi.org/10.1007/s10974-019-09560-8

    Article  CAS  PubMed  Google Scholar 

  49. Abella L, Höhm C, Hofmann B, Gergs U, Neumann J (2022) Effects of omecamtiv mecarbil and mavacamten in isolated human atrium. Naunyn-Schmiedeberg’s Archives of Pharmacology 396: 499–511. https://doi.org/10.1007/s00210-022-02333-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mamidi R, Holmes JB, Doh CY, Dominic KL, Madugula N, Stelzer JE (2021) cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. J Gen Physiol 153: e202012816. https://doi.org/10.1085/jgp.202012816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rønning L, Bakkehaug JP, Rødland L, Kildal AB, Myrmel T, How O-J (2018) Opposite diastolic effects of omecamtiv mecarbil versus dobutamine and ivabradine co-treatment in pigs with acute ischemic heart failure. Physiol Rep 6: e13879. https://doi.org/10.14814/phy2.13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fülöp GÁ, Oláh A, Csipo T, Kovács Á, Pórszász R, Veress R, Horváth B, Nagy L, Bódi B, Fagyas M, Helgadottir SL, Bánhegyi V, Juhász B, Bombicz M, Priksz D, Nanasi P, Merkely B, Édes I, Csanádi Z, Papp Z, Radovits T, Tóth A (2021) Omecamtiv mecarbil evokes diastolic dysfunction and leads to periodic electromechanical alternans. Basic Res Cardiol 116: 24. https://doi.org/10.1007/s00395-021-00866-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Querejeta Roca G, Campbell P, Claggett B, Solomon SD, Shah AM (2015) Right atrial function in pulmonary arterial hypertension. Circulation: Cardiovascular Imaging 8: e003521.

    PubMed  Google Scholar 

  54. Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR (2005) Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 288: H2140-2145. https://doi.org/10.1152/ajpheart.00566.2004

    Article  CAS  PubMed  Google Scholar 

  55. Syomin F, Zberia M, Tsaturyan A (2019) Multiscale simulation of the effects of atrioventricular block and valve diseases on heart performance. International Journal for Numerical Methods in Biomedical Engineering 35: e3216. https://doi.org/10.1002/cnm.3216

    Article  PubMed  Google Scholar 

  56. Syomin F, Khabibullina A, Osepyan A, Tsaturyan A (2020) Hemodynamic Effects of Alpha-Tropomyosin Mutations Associated with Inherited Cardiomyopathies: Multiscale Simulation. Mathematics 8: 1169. https://doi.org/10.3390/math8071169

    Article  Google Scholar 

Download references

Funding

This work was supported by IIF UrB RAS theme no. 122022200089-4. This work was performed using the equipment of the Shared Research Center of Scientific Equipment SRC IIP UrB RAS.

Author information

Authors and Affiliations

Authors

Contributions

Y.P. conceptualized the work; A.B., R.L., and D.K. performed experiments with intact trabeculae and analyzed data; E.M. performed histological analysis; A.K., D.S., and G.K. performed in vitro motility experiments and analyzed data; A.B., D.S., G.K., and Y.P. wrote the manuscript; all authors read and approved the manuscript.

Corresponding author

Correspondence to A. Balakin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakin, A., Lisin, R., Kuznetsov, D. et al. Effects of Omecamtiv Mecarbil on the Tension–Length Loop and Work in Right Ventricular Trabeculae from Rats with Pulmonary Heart Failure. J Evol Biochem Phys 59, 1182–1194 (2023). https://doi.org/10.1134/S0022093023040130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040130

Keywords:

Navigation