Skip to main content
Log in

Changes in the Rat Hippocampal Neurogenic Niche under Hypoxic Exposure

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The hippocampus is one of the brain structures most vulnerable to hypoxia. The cellular pool in the hippocampal subgranular zone (SGZ) neurogenic niche is maintained by the adaptive mechanisms, such as functional changes in the mitochondrial respiratory chain complexes and the reactivity of astroglia that provides structural and metabolic support for neurons. To reveal the dynamics of adaptive changes in neurons and glia of the hippocampal dentate gyrus in response to single (60 min) and repeated (8 and 20 bouts) intermittent hypobaric hypoxia exposures (5000 m equivalent to 10.5% O2), the localization and content of mitochondrial respiratory Complex IV cytochrome c oxidase subunit 1 (MTCO1), astrocyte markers glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), as well as the immature neuron marker doublecortin (DCX), were studied in low-resistant rats by immunomorphological methods. After a single hypoxic exposure, the MTCO1 content significantly increased in neurons, while after 8 hypoxic episodes, the GS level increased in astrocytes. Changes in the latter were most prominent in the astrocytic processes, indicative of hypoxia-induced GS redistribution. The number of DCX-positive neurons in the SGZ significantly decreased after 20 hypoxic episodes. At the same time, DCX-positive glia-like cells were found in the hippocampal polymorphic layer, while GFAP labeling revealed an increase in the number of astrocytes, which may be partly due to a shift in the direction of cell differentiation in the neurogenic niche. Thus, hypoxia first intensifies mitochondrial respiratory chain activity in the neurons of the hippocampal granular cell layer, followed by the activation of astrocytes that modulate glutamate metabolism. The relationship between the dynamics of adaptive energy metabolism reactions in neurons and glia and changes in neurogenesis after 20 hypoxic episodes suggests that repeated (long-term) hypoxia promotes a shift in the differentiation of SGZ neural progenitors toward astroglia. However, this issue requires further investigation to identify the nature of DCX-positive cells more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Zhang H, Roman RJ, Fan F (2022) Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered? GeroScience 44(1): 127–130. https://doi.org/10.1007/s11357-021-00449-4

    Article  CAS  PubMed  Google Scholar 

  2. Abbott LC, Nigussie F (2020) Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 49(1): 3–16. https://doi.org/10.1111/ahe.12496

    Article  PubMed  Google Scholar 

  3. Morgun AV, Osipova ED, Boytsova EB, Shuvaev AN, Komleva YK, Trufanova LV, Vais EF, Salmina AB (2019) Astroglia-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Aβ1-42. Biomed Khim 65(5): 366–373. https://doi.org/10.18097/PBMC20196505366

    Article  CAS  PubMed  Google Scholar 

  4. Egorova A, Baranich T, Brydun A, Glinkina V, Sukhorukov V (2022) Morphological and Histophysiological Features of the Brain Capillary Endothelium. J Evol Biochem Physiol 58: 755–768. https://doi.org/10.1134/S0022093022030115

    Article  Google Scholar 

  5. Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2): 150–161. https://doi.org/10.1016/j.stem.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Ma D, Yue F, Qi Y, Dou M, Cui L, Xing Y (2022) The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases. Cur Neuropharmacol 20(9): 1651–1666. https://doi.org/10.2174/1570159X19666210729123137

    Article  CAS  Google Scholar 

  7. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5: e13374. https://doi.org/10.7554/eLife.13374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lukyanova L, Germanova E, Khmil N, Pavlik L, Mikheeva I, Shigaeva M, Mironova G (2021) Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia. Int J Mol Sci 22(16): 8636. https://doi.org/10.3390/ijms22168636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arnold S (2012) Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. Adv Exp Med Biol 748: 305–339. https://doi.org/10.1007/978-1-4614-3573-0_13

    Article  CAS  PubMed  Google Scholar 

  10. Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Ann Rev Biomed Engineer 19: 163–194. https://doi.org/10.1146/annurev-bioeng-071516-044546

    Article  CAS  Google Scholar 

  11. Namba T, Dóczi J, Pinson A, Xing L, Kalebic N, Wilsch-Bräuninger M, Long KR, Vaid S, Lauer J, Bogdanova A, Borgonovo B, Shevchenko A, Keller P, Drechsel D, Kurzchalia T, Wimberger P, Chinopoulos C, Huttner WB (2020) Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron 105(5): 867–881. e9. https://doi.org/10.1016/j.neuron.2019.11.027

    Article  CAS  PubMed  Google Scholar 

  12. Turner DA, Adamson DC (2011) Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 70(3): 167–176. https://doi.org/10.1097/NEN.0b013e31820e1152

    Article  CAS  PubMed  Google Scholar 

  13. Schousboe A (2019) Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Let 689: 11–13. https://doi.org/10.1016/j.neulet.2018.01.038

    Article  CAS  Google Scholar 

  14. Sonnewald U, Qu H, Aschner M (2002) Pharmacology and toxicology of astrocyte-neuron glutamate transport and cycling. J Pharmacol Exp Ther 301(1): 1–6. https://doi.org/10.1124/jpet.301.1.1

    Article  CAS  PubMed  Google Scholar 

  15. Jayakumar AR, Norenberg MD (2016) Glutamine Synthetase: Role in Neurological Disorders. Adv Neurobiol 13: 327–350. https://doi.org/10.1007/978-3-319-45096-4_13

    Article  PubMed  Google Scholar 

  16. Gibbs ME, O'Dowd BS, Hertz L, Robinson SR, Sedman GL, Ng KT (1996) Inhibition of glutamine synthetase activity prevents memory consolidation. Brain research. Cogn Brain Res 4(1): 57–64. https://doi.org/10.1016/0926-6410(96)00020-1

    Article  CAS  Google Scholar 

  17. Son H, Kim S, Jung DH, Baek JH, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Lee DK, Kim HJ (2019) Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice. Sci Rep 9(1): 252. https://doi.org/10.1038/s41598-018-36619-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller JA, Nathanson J, Franjic D, Shim S, Dalley RA, Shapouri S, Smith KA, Sunkin SM, Bernard A, Bennett JL, Lee CK, Hawrylycz MJ, Jones AR, Amaral DG, Šestan N, Gage FH, Lein ES (2013) Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development (Cambridge, England) 140(22): 4633–4644. https://doi.org/10.1242/dev.097212

  19. Goh TY, Basah SN, Yazid H, Safar MJA, Saad FSA (2018) Performance Analysis of Image Thresholding: Otsu Technique. Measurement 114: 298–307. https://doi.org/10.1016/j.measurement.2017.09.052

    Article  Google Scholar 

  20. Refaeli R, Doron A, Benmelech-Chovav A, Groysman M, Kreisel T, Loewenstein Y, Goshen I (2021) Features of hippocampal astrocytic domains and their spatial relation to excitatory and inhibitory neurons. Glia 69(10): 2378–2390. https://doi.org/10.1002/glia.24044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol 4: 144. https://doi.org/10.3389/fendo.2013.00144

    Article  Google Scholar 

  22. Quebedeaux TM, Song H, Giwa-Otusajo J, Thompson LP (2022) Chronic Hypoxia Inhibits Respiratory Complex IV Activity and Disrupts Mitochondrial Dynamics in the Fetal Guinea Pig Forebrain. Reproduct Sci (Thousand Oaks, Calif) 29(1): 184–192. https://doi.org/10.1007/s43032-021-00779-w

  23. Tan XL, Liu JZ, Cao LF, Deng ZC, Li YH (2002) Effects of hypoxic exposure on coordinative expression of cytochrome oxidase subunits I and IV in rat cerebral cortex. Sheng Li Xue Bao 54(6): 519–524.

    CAS  PubMed  Google Scholar 

  24. Kang JJ, Guo B, Liang WH, Lam CS, Wu SX, Huang XF, Wong-Riley MTT, Fung ML, Liu YY (2019) Daily acute intermittent hypoxia induced dynamic changes in dendritic mitochondrial ultrastructure and cytochrome oxidase activity in the pre-Bötzinger complex of rats. Exp Neurol 313: 124–134. https://doi.org/10.1016/j.expneurol.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  25. Kang JJ, Fung ML, Zhang K, Lam CS, Wu SX, Huang XF, Yang SJ, Wong-Riley MTT, Liu YY (2020) Chronic intermittent hypoxia alters the dendritic mitochondrial structure and activity in the pre-Bötzinger complex of rats. FASEB J: Official Publ Federat Am Society Exp Biol 34(11): 14588–14601. https://doi.org/10.1096/fj.201902141R

    Article  CAS  Google Scholar 

  26. Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Reports 19(5): e45432. https://doi.org/10.15252/embr.201745432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cui P, Zhang P, Yuan L, Wang L, Guo X, Cui G, Zhang Y, Li M, Zhang X, Li X, Yin Y, Yu Z (2021) HIF-1α Affects the Neural Stem Cell Differentiation of Human Induced Pluripotent Stem Cells via MFN2-Mediated Wnt/β-Catenin Signaling. Front Cell Devel Biol 9: 671704. https://doi.org/10.3389/fcell.2021.671704

    Article  Google Scholar 

  28. Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RD, Panchision DM (2007) Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells (Dayton, Ohio) 25(9): 2291–2301. https://doi.org/10.1634/stemcells.2006-0609

  29. Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez JM, Garcia AJ 3rd (2019) Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci: Official J Society Neurosci 39(7): 1320–1331. https://doi.org/10.1523/JNEUROSCI.1359-18.2018

    Article  CAS  Google Scholar 

  30. Kasahara Y, Nakashima H, Nakashima K (2023) Seizure-induced hilar ectopic granule cells in the adult dentate gyrus. Front Neurosci 17: 1150283. https://doi.org/10.3389/fnins.2023.1150283

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cameron MC, Zhan RZ, Nadler JV (2011) Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol 519(11):2175–2192. https://doi.org/10.1002/cne.22623

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kunze A, Achilles A, Keiner S, Witte OW, Redecker C (2015) Two distinct populations of doublecortin-positive cells in the perilesional zone of cortical infarcts. BMC Neurosci 16: 20. https://doi.org/10.1186/s12868-015-0160-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moura DMS, Brandão JA, Lentini C, Heinrich C, Queiroz CM, Costa MR (2020) Evidence of Progenitor Cell Lineage Rerouting in the Adult Mouse Hippocampus After Status Epilepticus. Front Neurosci 14: 571315. https://doi.org/10.3389/fnins.2020.571315

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM (2021) TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 11(9): 1360. https://doi.org/10.3390/biom11091360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dzhalilova DS, Diatroptov ME, Tsvetkov IS, Makarova OV, Kuznetsov SL (2018) Expression of Hif-1α, Nf-κb, and Vegf Genes in the Liver and Blood Serum Levels of HIF-1α, Erythropoietin, VEGF, TGF-β, 8-Isoprostane, and Corticosterone in Wistar Rats with High and Low Resistance to Hypoxia. Bull Exp Biol Med 165(6): 781–785. https://doi.org/10.1007/s10517-018-4264-x

    Article  CAS  PubMed  Google Scholar 

  36. Baumann J, Tsao CC, Patkar S, Huang SF, Francia S, Magnussen SN, Gassmann M, Vogel J, Köster-Hegmann C, Ogunshola OO (2022) Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo. Fluids Barriers CNS 19(1): 6. https://doi.org/10.1186/s12987-021-00302-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo J (2022) TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 10(5): 1206. https://doi.org/10.3390/biomedicines10051206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wachs FP, Winner B, Couillard-Despres S, Schiller T, Aigner R, Winkler J, Bogdahn U, Aigner L (2006) Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65(4): 358–370. https://doi.org/10.1097/01.jnen.0000218444.53405.f0

    Article  CAS  PubMed  Google Scholar 

  39. Mathieu P, Piantanida AP, Pitossi F (2010) Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation 17(3): 200–201. https://doi.org/10.1159/000258723

    Article  CAS  PubMed  Google Scholar 

  40. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN neuro 3(3): e00062. https://doi.org/10.1042/AN20100029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee A, Lingwood BE, Bjorkman ST, Miller SM, Poronnik P, Barnett NL, Colditz P, Pow DV (2010) Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity. J Chem Neuroanatomy 39(3): 211–220. https://doi.org/10.1016/j.jchemneu.2009.12.002

    Article  CAS  Google Scholar 

  42. Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U (2011) Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 59(11): 1706–1718. https://doi.org/10.1002/glia.21217

    Article  PubMed  Google Scholar 

  43. Voronkov DN, Salnikova OV, Khudoerkov RM (2017) Immunocytochemical and morphometric changes in astroglial cells in the perifocal zone of the cerebral infarction model. Annals Clin Exp Neurol 11(1): 40–46. https://doi.org/10.18454/ACEN.2017.1.6158

    Article  Google Scholar 

  44. Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC (2019) Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Internat 123: 22–33. https://doi.org/10.1016/j.neuint.2018.07.009

    Article  CAS  Google Scholar 

Download references

Funding

This work was state budget funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (E.N.F., D.N.V., A.V.E., E.L.G.), data collection, processing and analysis (E.N.F., D.N.V., A.V.E.), writing and editing the manuscript (E.N.F., D.N.V., A.V.E., T.I.B., V.V.G., L.D.L., V.S.S.).

Corresponding author

Correspondence to E. N. Fedorova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional principles of animal care and use were observed. All experimental procedures performed with the use of animals complied with the ethical standards approved by legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations by the local Ethics Committee at the Research Center of Neurology (Meeting minutes nos. 10—7/20 of 27.11.2020).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 4, pp. 319–331https://doi.org/10.31857/S0044452923040022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, E.N., Voronkov, D.N., Egorova, A.V. et al. Changes in the Rat Hippocampal Neurogenic Niche under Hypoxic Exposure. J Evol Biochem Phys 59, 1086–1099 (2023). https://doi.org/10.1134/S0022093023040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040075

Keywords:

Navigation