Skip to main content
Log in

Reconstruction of Metabolic Activity of the Gut Microbiota in Children and Adults with Obesity and Its Relationship with the Representation of Alkylresorcinols in Stool Samples

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The human body is a superorganism whose performance depends on trillions of residential microbial cells. Evolving together with the host, the microbiota formed the phenotypes of our ancestors. Mutations emerging in the process of natural selection led to a co-adaptation of the host organism and microbial cells to environmental conditions. The composition and metabolic activity of the gut microbiota influence multiple physiological processes, as well as the development of pathological conditions and dysmetabolic syndrome that includes obesity. Alkylresorcinols (ARs) are biologically active polyphenolic compounds, mainly plant- or microbial-derived, that have the ability to highly affect host metabolism and the composition of the gut microbiota. In the present study, we carried out metagenomic sequencing of microbial DNA isolated from the stool samples of 401 metabolically healthy and obese children and adults, and also determined the content of various AR homologs in these samples. Using the high-throughput sequencing data, we reconstructed the metabolic potential of the gut microbiota and assessed the correlations between the content of various AR homologs and the representation of bacterial genes encoding various enzymes (KEGG database) in stool samples. Based on the results obtained, we revealed the features of functional changes in the intestinal microbiota in adults and children with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Saad MJA, Santos A, Prada PO (2016) Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 31: 283–293. https://doi.org/10.1152/physiol.00041.2015

    Article  CAS  PubMed  Google Scholar 

  2. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113: 2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  3. Vandenplas Y, Carnielli VP, Ksiazyk J, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, Singhal A, Wabitsch M (2020) Factors affecting early-life intestinal microbiota development. Nutrition 78: 110812. https://doi.org/10.1016/j.nut.2020.110812

    Article  CAS  PubMed  Google Scholar 

  4. Moeller AH, Sanders JG (2020) Roles of the gut microbiota in the adaptive evolution of mammalian species. Philosophical Transact Royal Society B: Biol Sci 375: 20190597. https://doi.org/10.1098/rstb.2019.0597

    Article  CAS  Google Scholar 

  5. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cel Mol Life Sci 76: 473–493. https://doi.org/10.1007/s00018-018-2943-4

    Article  CAS  Google Scholar 

  6. Arumugam M, Raes J, Pelletier E, le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zabolotneva AA, Shatova OP, Sadova AA, Shestopalov A V., Roumiantsev SA (2022) An Overview of Alkylresorcinols Biological Properties and Effects. J Nutr Metab 2022: 1–12. https://doi.org/10.1155/2022/4667607

    Article  CAS  Google Scholar 

  8. Bitkov VV, Nenashev VA, Pridachina NN, Batrakov SG (1992) Membrane-structuring properties of bacterial long-chain alkylresorcinols. Biochimica et Biophysica Acta (BBA). Biomembranes 1108: 224–232. https://doi.org/10.1016/0005-2736(92)90029-L

    Article  CAS  Google Scholar 

  9. Nikolaev YA, Tutel’yan AV, Loiko NG, Buck J, Sidorenko S, Lazareva I, Gostev V, Manzen’yuk OY, Shemyakin IG, Abramovich RA, Huwyler J, El’-Registan GI (2020) The use of 4-Hexylresorcinol as antibiotic adjuvant. PLoS One 15: e0239147. https://doi.org/10.1371/journal.pone.0239147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kozubek A, Tyman JHP (1999) Resorcinolic Lipids, the Natural Non-isoprenoid Phenolic Amphiphiles and Their Biological Activity. Chem Rev 99: 1–26. https://doi.org/10.1021/cr970464o

    Article  CAS  PubMed  Google Scholar 

  11. Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cel Mol Life Sci 67: 841–860. https://doi.org/10.1007/s00018-009-0193-1

    Article  CAS  Google Scholar 

  12. El’-Registan GI, Muliukin AL, Nikolaev IA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptive functions of extracellular autoregulators of microorganisms. Mikrobiologiia 75: 446–456.

    PubMed  Google Scholar 

  13. Nikolaev IA, Muliukin AL, Stepanenko II, El’-Registan GI (2006) Autoregulation of stress response in microorganisms. Mikrobiologiia 75: 489–496.

    PubMed  Google Scholar 

  14. Cox LM, Blaser MJ (2013) Pathways in Microbe-Induced Obesity. Cell Metab 17: 883–894. https://doi.org/10.1016/j.cmet.2013.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489: 242–249. https://doi.org/10.1038/nature11552

    Article  CAS  PubMed  Google Scholar 

  16. Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27: 59–72. https://doi.org/10.1016/j.bpg.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  17. Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y, Tanaka K, Kikuchi Y, Fukudome S, Okita K, Takano-Ishikawa Y (2015) Wheat Alkylresorcinols Suppress High-Fat, High-Sucrose Diet-Induced Obesity and Glucose Intolerance by Increasing Insulin Sensitivity and Cholesterol Excretion in Male Mice. J Nutr 145: 199–206. https://doi.org/10.3945/jn.114.202754

    Article  CAS  PubMed  Google Scholar 

  18. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Brit J Nutrit 99: 110–120. https://doi.org/10.1017/S0007114507793923

    Article  CAS  PubMed  Google Scholar 

  19. Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP (2013) Impact of Polyphenols and Polyphenol-Rich Dietary Sources on Gut Microbiota Composition. J Agric Food Chem 61: 9517–9533. https://doi.org/10.1021/jf402506c

    Article  CAS  PubMed  Google Scholar 

  20. Rejman J, Kozubek A (2004) Inhibitory Effect of Natural Phenolic Lipids upon NAD-Dependent Dehydrogenases and on Triglyceride Accumulation in 3T3-L1 Cells in Culture. J Agric Food Chem 52: 246–250. https://doi.org/10.1021/jf034745a

    Article  CAS  PubMed  Google Scholar 

  21. Andersson U, Dey ES, Holm C, Degerman E (2011) Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Mol Nutr Food Res 55: S290–S293. https://doi.org/10.1002/mnfr.201100231

    Article  CAS  PubMed  Google Scholar 

  22. Rejman J, Kozubek A (1997) Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cel Mol Biol Let 2: 411–419.

    CAS  Google Scholar 

  23. Horikawa K, Hashimoto C, Kikuchi Y, Makita M, Oishi K (2022) Wheat alkylresorcinol increases fecal lipid excretion and suppresses feed efficiency in mice depending on time of supplementation. Nutrition 103: 111796. https://doi.org/10.1016/j.nut.2022.111796

    Article  CAS  PubMed  Google Scholar 

  24. Ross AB, Chen Y, Frank J, Swanson JE, Parker RS, Kozubek A, Lundh T, Vessby B, AÅman P, Kamal-Eldin A (2004) Cereal Alkylresorcinols Elevate γ-Tocopherol Levels in Rats and Inhibit γ-Tocopherol Metabolism In Vitro. J Nutr 134: 506–510. https://doi.org/10.1093/jn/134.3.506

    Article  CAS  PubMed  Google Scholar 

  25. Song S, Liu Q, Chai W-M, Xia S-S, Yu Z-Y, Wei Q-M (2021) Inhibitory potential of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation: Activity and mechanism. J Biosci Bioeng 131: 241–249. https://doi.org/10.1016/j.jbiosc.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Zhu S, Zhang C, Chen H, Liu Y, Tu J (2013) Inhibition of wheat bran and it’s active compoments on α-glucosidase in vitro. Pharmacogn Mag 9: 309. https://doi.org/10.4103/0973-1296.117826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38: 685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. http://qiime.org/

  29. https://www.genome.jp/kegg/

  30. https://github.com/ivasilyev/curated_projects/blob/a2f926539c151f4dd33b1ec9f24918315607b663/ashestopalov/nutrition/obesity_metagenomes/5_count_correlations.py#L38

  31. Shestopalov AV, Gaponov AM, Zabolotneva AA, Appolonova SA, Markin PA, Borisenko OV, Tutelyan AV, Rumyantsev AG, Teplyakova ED, Shin VF, Savchuk DV, Volkova NI, Ganenko LA, Makarov VV, Yudin SM, Rumyantsev SA (2022) Alkylresorcinols: New Potential Bioregulators in the Superorganism System (Human–Microbiota). Biol Bullet 49: 150–159. https://doi.org/10.1134/S1062359022030153

    Article  CAS  Google Scholar 

  32. (2012) The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214. https://doi.org/10.1038/nature11234

  33. https://www.brenda-enzymes.org/

  34. Ridlon JM, Hylemon PB (2012) Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J Lipid Res 53: 66–76. https://doi.org/10.1194/jlr.M020313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wells JE, Hylemon PB (2000) Identification and Characterization of a Bile Acid 7α-Dehydroxylation Operon in Clostridium sp. Strain TO-931, a Highly Active 7α-Dehydroxylating Strain Isolated from Human Feces. Appl Environ Microbiol 66: 1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogt SL, Peña-Díaz J, Finlay BB (2015) Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34: 106–115. https://doi.org/10.1016/j.anaerobe.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  37. Bourgin M, Labarthe S, Kriaa A, Lhomme M, Gérard P, Lesnik P, Laroche B, Maguin E, Rhimi M (2020) Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Front Microbiol 11: 1121. https://doi.org/10.3389/fmicb.2020.01121

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vachali P, Bhosale P, Bernstein PS (2012) Microbial Carotenoids. pp 41–59.

    Book  Google Scholar 

  39. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment Pharmacol Ther 22: 495–512. https://doi.org/10.1111/j.1365-2036.2005.02615.x

    Article  CAS  PubMed  Google Scholar 

  40. Hu J, Lin S, Zheng B, Cheung PCK (2018) Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr 58: 1243–1249. https://doi.org/10.1080/10408398.2016.1245650

    Article  CAS  PubMed  Google Scholar 

  41. Karney A (2017) Microbiota and obesity. Dev Period Med 21: 203–207. https://doi.org/10.34763/devperiodmed.20172103.203207

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences 105: 16767–16772. https://doi.org/10.1073/pnas.0808567105

    Article  Google Scholar 

  43. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374–2383. https://doi.org/10.1007/s00125-007-0791-0

    Article  CAS  PubMed  Google Scholar 

  44. Hong Y-H, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi K-C, Feng DD, Chen C, Lee H-G, Katoh K, Roh S-G, Sasaki S (2005) Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43. Endocrinology 146: 5092–5099. https://doi.org/10.1210/en.2005-0545

    Article  CAS  PubMed  Google Scholar 

  45. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG (2016) Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J Obes 2016: 1–27. https://doi.org/10.1155/2016/7353642

    Article  Google Scholar 

  46. Jan G, Belzacq A-S, Haouzi D, Rouault A, Métivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9: 179–188. https://doi.org/10.1038/sj.cdd.4400935

    Article  CAS  PubMed  Google Scholar 

  47. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5: e73. https://doi.org/10.1038/cti.2016.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9: 55. https://doi.org/10.1038/s41467-017-02490-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yagodina OV, Nikol’skaya EB, Khovanskikh AE, Kormilitsyn BN (2002) Amine Oxidases of Microorganisms. J Evol Biochem Physiol 38: 251–258. https://doi.org/10.1023/A:1020714607203

    Article  CAS  Google Scholar 

  50. Lundgren P, Thaiss CA (2020) The microbiome-adipose tissue axis in systemic metabolism. American Journal of Physiology-Gastrointestinal and Liver Physiology 318: G717–G724. https://doi.org/10.1152/ajpgi.00304.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cronan JE, Littel KJ, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149: 916–922. https://doi.org/10.1128/jb.149.3.916-922.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walker A (2007) Say hello to our little friends. Nat Rev Microbiol 5: 572–573. https://doi.org/10.1038/nrmicro1720

    Article  CAS  PubMed  Google Scholar 

  53. Mathur R, Barlow GM (2015) Obesity and the microbiome. Expert Rev Gastroenterol Hepatol 9: 1087–1099. https://doi.org/10.1586/17474124.2015.1051029

    Article  CAS  PubMed  Google Scholar 

  54. Indiani CM dos SP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM (2018) Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity 14: 501–509. https://doi.org/10.1089/chi.2018.0040

    Article  Google Scholar 

  55. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16: 90. https://doi.org/10.1186/s12866-016-0708-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoon K, Kim N (2021) Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil 27: 314–325. https://doi.org/10.5056/jnm20208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was state budget funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (A.V.Sh., T.V.G.), data collection (I.Yu.V., A.M.G.), data processing (A.A.Z., A.B.I.), writing and editing a manuscript (A.A.Z., S.A.R., A.V.Sh.).

Corresponding author

Correspondence to A. A. Zabolotneva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 4, pp. 271–291https://doi.org/10.31857/S0044452923040095.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1134/S002209302304004X.

10893_2023_8463_MOESM1_ESM.pdf

10893_2023_8463_MOESM2_ESM.pdf

10893_2023_8463_MOESM3_ESM.pdf

10893_2023_8463_MOESM4_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotneva, A.A., Itov, A.B., Grigorieva, T.V. et al. Reconstruction of Metabolic Activity of the Gut Microbiota in Children and Adults with Obesity and Its Relationship with the Representation of Alkylresorcinols in Stool Samples. J Evol Biochem Phys 59, 1037–1056 (2023). https://doi.org/10.1134/S002209302304004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302304004X

Keywords:

Navigation