Skip to main content
Log in

Functional Synergy Ensures a Trampoline Jump Stopping

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The paper considers the structure of intermuscular synergetic interaction that ensures the athlete’s body stopping on the trampoline after a jump. We compared the spatio-temporal characteristics of muscle synergies extracted from the skeletal muscles electroactivity amplitude and frequency of biopotentials data. The objective of the study was to find out whether the extracted kinematic modules represent the central mechanisms for the movement structure controlling as well as to determine the variables which should be stabilized by muscle synergies activity. The extraction of synergies was carried out using the matrix factorization method. It has been established that trampoline jump stopping can be performed using common patterns of muscle synergies spatio-temporal activation. The synergistic effects obtained using different approaches of instrumental assessment of skeletal muscle electroactivity probably reflect different control mechanisms implemented at different levels of the central nervous system. Muscle synergies are aimed at the stabilizing of the certain anthropometric points movement, as well as body segments, combined into kinematic modules. The structure of the kinematic modules themselves indicates the effective organization of intermuscular interaction, indirectly reflecting the central control mechanisms of complex multi-joint movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Mel’nikov AA, Vikulov AD, Malahov MV (2016) Balance function in wrestlers. YAGPU, Yaroslavl’. (In Russ).

    Google Scholar 

  2. Gurfinkel VS, Osevets M (1972) Dynamics of the vertical posture in man. Biophysics 17: 496–506.

    Google Scholar 

  3. Gurfinkel VS, Koc YaM, Shik ML (1965) Regulation of human posture. Nauka, M. (In Russ).

    Google Scholar 

  4. Aleksandrov A, Frolov A (2017) Biomechanical analysis of the coordination of posture and movement in a standing person with body tilts in the sagittal plane. ZHVND im IP Pavlova 67: 33–48. https://doi.org/10.7868/S0044467717010038

    Article  Google Scholar 

  5. Park E, Schöner G, Scholz J (2012) Functional synergies underlying control of upright posture during changes in head orientation. PLoS One 7(8): e41583: https://doi.org/10.1371/journal.pone.0041583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robert T, Zatsiorsky V, Latash M (2008) Multi-muscle synergies in an unusual postural task: quick shear force production. Exp Brain Res 187(2): 237–253. https://doi.org/10.1007/s00221-008-1299-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Altenburger K, Bumke O, Foerster O (1937) Allgemeine neurologie. Handbuch der Neurologie, Berlin.

    Google Scholar 

  8. Moiseev S, Pukhov A, Mikhailova E, Gorodnichev R (2022) Methodological and Computational Aspects of Extracting Extensive Muscle Synergies in Moderate-Intensity Locomotions. J Evol Biochem Physiol 58(1): 88–97. https://doi.org/10.1134/s0022093022010094.

    Article  Google Scholar 

  9. Tresch M, Cheung V, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95(4): 2199–2212. https://doi.org/10.1152/jn.00222.2005

    Article  PubMed  Google Scholar 

  10. Person RS (1985) Spinal mechanisms of muscle contraction control. Nauka, M. (In Russ).

    Google Scholar 

  11. Moiseev S, Ivanov S, Gorodnichev R (2022) The Motor Synergies’ Organization Features at Different Levels of Motor Control during High Coordinated Human’s Movement. J Evol Biochem Physiol 58(2): 610–622. https://doi.org/10.1134/s0022093022020272

    Article  CAS  Google Scholar 

  12. Radchenko SG (2011) Metodologiya regressionnogo analiza: monografiya. K. Kornijchuk. (In Russ).

    Google Scholar 

  13. Munoz-Martel V, Santuz A, Bohm S, Arampatzis A (2021) Proactive Modulation in the Spatiotemporal Structure of Muscle Synergies Minimizes Reactive Responses in Perturbed Landings. Front Bioeng Biotechnol 9: 761766. https://doi.org/10.3389/fbioe.2021.761766

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silva PB, Oliveira AS, Mrachacz-Kersting N, Kersting UG (2018) Effects of wobble board training on single-leg landing neuromechanics. Scand J Med Sci Sports 28(3): 972–982. https://doi.org/10.1111/sms.13027

    Article  CAS  PubMed  Google Scholar 

  15. Rabbi M, Pizzolato C, Lloyd D, Carty C, Devaprakash D, Diamond L (2020) Non-negative matrix factorization is the most appropriate method for extraction of muscle synergies in walking and running. Sci Rep 10: 8266. https://doi.org/10.1038/s41598-020-65257-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nardon M, Pascucci F, Cesari P, Bertucco M, Latash M (2022) Synergies Stabilizing Vertical Posture in Spaces of Control Variables. Neuroscience 500: 79–94. https://doi.org/10.1016/j.neuroscience.2022.08.006

    Article  CAS  PubMed  Google Scholar 

  17. Latash M (2010) Motor synergies and the equilibrium-point hypothesis. Motor Control 14(3): 294–322. https://doi.org/10.1123/mcj.14.3.294

    Article  PubMed  PubMed Central  Google Scholar 

  18. De Marchis C, Severini G, Castronovo AM, Schmid M, Conforto S (2015) Intermuscular coherence contributions in synergistic muscles during pedaling. Exp Brain Res 233(6): 1907–1919. https://doi.org/10.1007/s00221-015-4262-4

    Article  PubMed  Google Scholar 

  19. Madarshahian S, Latash ML (2021) Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 240(1): 321–340. https://doi.org/10.1007/s00221-021-06255-w

    Article  PubMed  Google Scholar 

  20. Latash ML, Madarshahian S, Ricotta JM (2022) Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 27(2): 402–441. https://doi.org/10.1123/mc.2022-0094

    Article  PubMed  Google Scholar 

  21. Ricotta JM, Nardon M, De SD, Jiang J, Graziani W, Latash ML (2023) Motor unit-based synergies in a non-compartmentalized muscle. Exp Brain Res 241: 1367–1379. https://doi.org/10.1007/s00221-023-06606-9

    Article  PubMed  Google Scholar 

  22. Gidikov AA (1975) Theoretical basics of electromyography. Nauka, L. (In Russ).

    Google Scholar 

  23. Gurfinkel’ VS, Levik YUS (1985) Skeletal muscle: structure and function. Nauka, M. (In Russ).

    Google Scholar 

  24. Nishida K, Hagio S, Kibushi B, Moritani T, Kouzaki M (2017) Comparison of muscle synergies for running between different foot strike patterns. PLoS One 12(2): e0171535. https://doi.org/10.1371/journal.pone.0171535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moiseev S, Gorodnichev R (2022) Motor Synergy Structure Variability in Different Intensity Locomotions. Hum Physiol 48: 370–380. https://doi.org/10.1134/S0362119722040089

    Article  CAS  Google Scholar 

  26. Barroso FO, Torricelli D, Moreno JC, Taylor J, Gomez-Soriano J, Bravo-Esteban E, Piazza S, Santos C, Pons JL (1984) Shared muscle synergies in human walking and cycling. J Neurophysiol. 112(8): 1984. https://doi.org/10.1152/jn.00220.2014

    Article  Google Scholar 

  27. Bach MM, Daffertshofer A, Dominici N (2021) Muscle Synergies in Children Walking and Running on a Treadmill. Front Hum Neurosci 15: 637157. https://doi.org/10.3389/fnhum.2021.637157

    Article  PubMed  PubMed Central  Google Scholar 

  28. Escalona MJ, Bourbonnais D, Goyette M, Le Flem D, Duclos C, Gagnon DH (2021) Effects of Varying Overground Walking Speeds on Lower-Extremity Muscle Synergies in Healthy Individuals. Motor Control 25(2): 234. https://doi.org/10.1123/mc.2020-0008

    Article  PubMed  Google Scholar 

  29. Santuz A, Ekizos A, Janshen L, et al. (2018) Modular Control of Human Movement During Running: An Open Access Data Set. Front Physiol 9: 1509. https://doi.org/10.3389/fphys.2018.01509

  30. Bernshtejn NA (1990) The physiology of movement and activity. Nauka, M. (In Russ).

    Google Scholar 

  31. Hajiloo B, Anbarian M, Esmaeili H, Mirzapour M (2020) The effects of fatigue on synergy of selected lower limb muscles during running. J Biomech 103: 1. https://doi.org/10.1016/j.jbiomech.2020.109692

    Article  Google Scholar 

  32. Gel’fand I, Cetlin M (1962) About some ways to manage complex systems. UMN 17(1): 3–25. (In Russ).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the employees of the Research Institute of Sports and Recreational Physical Culture Problems of Velikiye Luki State Academy of Physical Education and Sports A.M. Pukhov, V.V. Markevich, and S.M. Ivanov for their help in organizing and conducting research.

Funding

Funding was provided as part of the planned work of the FSFEI HE “Velikiye Luki State Academy of Physical Education and Sports”.

Author information

Authors and Affiliations

Authors

Contributions

S.A.M.—planning, organizing, and participating in conducting experiments, recording and analyzing the data obtained, data processing, preparation of the manuscript text; E.A.M.—participating in conducting experiments, writing and editing the manuscript.

Corresponding author

Correspondence to S. A. Moiseev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research using animals as subjects. All procedures performed in studies involving human subjects conform to the ethical standards of the National Research Ethics Committee and the 1964 Declaration of Helsinki and its subsequent revisions or comparable ethical standards. Informed voluntary consent was obtained from each of the participants included in the study. Minutes of the meeting of the local ethics committee at FSFEI HE VLSAPES no. 2 dated 07.02.2022.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 4, pp. 243–254https://doi.org/10.31857/S0044452923040058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseev, S.A., Mikhaylova, E.A. Functional Synergy Ensures a Trampoline Jump Stopping. J Evol Biochem Phys 59, 1007–1019 (2023). https://doi.org/10.1134/S0022093023040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040014

Keywords:

Navigation