Skip to main content
Log in

Characteristics of Actin—Myosin Interaction in Different Regions of Rat Heart

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The ventricles and atria of the mammalian heart have differences in structure and function at different levels of organization. However, the current data on mechanical function of the heart chambers at different levels are contradictory and demand a detailed study. We compared mechanical characteristics of actin–myosin interaction by an in vitro motility assay and structural characteristics of contractile and regulatory proteins by one-dimensional denaturating polyacrylamide gel electrophoresis (SDS-PAGE) in atria, septum, right, and left ventricles. The sliding velocity of the reconstituted thin filaments over atrial myosin was significantly higher compared to other myocardium regions. No differences were observed in sliding velocity of atrial, septal, and ventricular native thin filaments over the myosin from the same myocardium region of the same rats. At the same time, the sliding velocity of the atrial native thin filament over porcine myosin was lower than that of the ventricular and septal native thin filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.

Similar content being viewed by others

References

  1. Belin RJ, Sumandea MP, Sievert GA, Harvey LA, Geenen DL, Solaro RJ, de Tombe PP (2011) Interventricular differences in myofilament function in experimental congestive heart failure. Pflügers Arch—Eur J Physiol 462: 795–809. https://doi.org/10.1007/s00424-011-1024-4

    Article  CAS  Google Scholar 

  2. Shchepkin DV, Nikitina LV, Bershitsky SY, Kopylova GV (2017) The isoforms of α-actin and myosin affect the Ca2+ regulation of the actin–myosin interaction in the heart. Biochem Biophys Res Commun 490: 324–329. https://doi.org/10.1016/j.bbrc.2017.06.043

    Article  CAS  PubMed  Google Scholar 

  3. Nollet EE, Manders EM, Goebel M, Jansen V, Brockmann C, Osinga J, van der Velden J, Helmes M, Kuster DWD (2020) Large-Scale Contractility Measurements Reveal Large Atrioventricular and Subtle Interventricular Differences in Cultured Unloaded Rat Cardiomyocytes. Front Physiol 11: 1–11. https://doi.org/10.3389/fphys.2020.00815

    Article  Google Scholar 

  4. Maggs AM, Taylor-Harris P, Peckham M, Hughes SM (2000) Evidence for differential post-translational modifications of slow myosin heavy chain during murine skeletal muscle development. J Muscle Res Cell Motil 21: 101–113. https://doi.org/10.1023/A:1005639229497

    Article  CAS  PubMed  Google Scholar 

  5. Galler S, Puchert E, Gohlsch B, Schmid D, Pette D (2002) Kinetic properties of cardiac myosin heavy chain isoforms in rat. Pflugers Arch Eur J Physiol 445: 218–223. https://doi.org/10.1007/s00424-002-0934-6

    Article  CAS  Google Scholar 

  6. Alpert NR, Brosseau C, Federico A, Krenz M, Robbins J, Warshaw DM (2002) Molecular mechanics of mouse cardiac myosin isoforms. Am J Physiol—Hear Circ Physiol 283: 1446–1454. https://doi.org/10.1152/ajpheart.00274.2002

    Article  Google Scholar 

  7. Nikitina LV, Kopylova GV, Shchepkin DV, Katsnelson LB (2008) Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay. Biochem 73: 178–184. https://doi.org/10.1007/s10541-008-2009-6

    Article  CAS  Google Scholar 

  8. Chizzonite RA, Everett AW, Prior G, Zak R (1984) Comparison of Myosin Heavy Chains in Atria and Ventricles from Hyperthyroid, Hypothyroid and Euthyroid rats. J Biol Chem 259: 15564–15571.

    Article  CAS  PubMed  Google Scholar 

  9. Hoh JF, McGrath PA, Hale PT (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10: 1053–1060.

    Article  CAS  PubMed  Google Scholar 

  10. Actc1—Actin, alpha cardiac muscle 1 precursor—Rattus norvegicus (Rat)—Actc1 gene & protein. https://www.uniprot.org/uniprot/P68035. Accessed 8 Jul 2021

  11. Chaponnier C, Gabbiani G (2004) Pathological situations characterized by altered actin isoform expression. J Pathol 204: 386–395. https://doi.org/10.1002/path.1635

    Article  CAS  PubMed  Google Scholar 

  12. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40: 169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tpm1—Tropomyosin alpha-1 chain—Rattus norvegicus (Rat)—Tpm1 gene and protein. https://www.uniprot.org/uniprot/P04692. Accessed 8 Jul 2021

  14. Cummins P, Perry SV (1973) The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J 133: 765–777. https://doi.org/10.1042/bj1330765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Helfman DM, Cheley S, Kuismanen E, Finn LA, Yamawaki-Kataoka Y (1986) Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol 6: 3582–3595. https://doi.org/10.1128/mcb.6.11.3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tnnc1—Cardiac troponin C—Rattus norvegicus (Rat)—Tnnc1 gene & protein. https://www.uniprot.org/uniprot/Q4PP99. Accessed 8 Jul 2021

  17. Tnnt2—Troponin T, cardiac muscle—Rattus norvegicus (Rat)—Tnnt2 gene & protein. https://www.uniprot.org/uniprot/P50753. Accessed 8 Jul 2021

  18. Tnni3—Troponin I, cardiac muscle—Rattus norvegicus (Rat)—Tnni3 gene & protein. https://www.uniprot.org/uniprot/P23693. Accessed 8 Jul 2021

  19. Marques MA de, de Oliveira GAP (2016) Cardiac troponin and tropomyosin: Structural and cellular perspectives to unveil the hypertrophic cardiomyopathy phenotype. Front Physiol 7: 1–25. https://doi.org/10.3389/fphys.2016.00429

    Article  Google Scholar 

  20. Wieczorek DF (2019) The Role of Tropomyosin in Cardiac Function and Disease. In: Cardiac Diseases and Interventions in 21st Century. IntechOpen.

    Google Scholar 

  21. Gomes AV, Guzman G, Zhao J, Potter JD (2002) Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development: Insights into the role of troponin T isoforms in the heart. J Biol Chem 277: 35341–35349. https://doi.org/10.1074/jbc.M204118200

    Article  CAS  PubMed  Google Scholar 

  22. Wikman-Coffelt J, Refsum H, Hollosi G (1982) Comparative force-velocity relation and analyses of myosin of dog atria and ventricles. Am J Physiol—Hear Circ Physiol 243: H391-H397. https://doi.org/10.1152/ajpheart.1982.243.3.h391

    Article  CAS  Google Scholar 

  23. Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY (2015) Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. Biochem 80: 1748–1763. https://doi.org/10.1134/S0006297915130106

    Article  CAS  Google Scholar 

  24. Lüss I, Boknik P, Jones LR, Kirchhefer U, Knapp J, Linck B, Lüss H, Meissner A, Müller FU, Schmitz W, Vahlensieck U, Neumann J (1999) Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J Mol Cell Cardiol 31: 1299–1314. https://doi.org/10.1006/jmcc.1999.0962

    Article  PubMed  Google Scholar 

  25. Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol Circ Physiol 274: H1048–H1053. https://doi.org/10.1016/S0165-5876(00)00363-3

    Article  CAS  Google Scholar 

  26. Yamashita H, Sugiura S, Fujita H, Yasuda SI, Nagai R, Saeki Y, Sunagawa K, Sugi H (2003) Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin–myosin interaction. Cardiovasc Res 60: 580–588. https://doi.org/10.1016/j.cardiores.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Kawai M, Karam TS, Michael JJ, Wang L, Chandra M (2016) Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing α- and β-myosin heavy chain with sinusoidal analysis. J Muscle Res Cell Motil 37: 203–214. https://doi.org/10.1007/s10974-016-9456-2

    Article  CAS  PubMed  Google Scholar 

  28. Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in Propagation of Ca2+ Release in Atrial and Ventricular Myocytes. Jpn J Physiol 55: 81–91. https://doi.org/10.2170/JJPHYSIOL.R2077

    Article  CAS  PubMed  Google Scholar 

  29. Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Cell Biol 24: 271–289.

    Article  CAS  PubMed  Google Scholar 

  30. Potter JD (1982) Preparation of troponin and its subnits. Methods Enzymol 85: 241–263.

    Article  CAS  PubMed  Google Scholar 

  31. Matyushenko AM, Artemova NV, Shchepkin DV, Kopylova GV, Bershitsky SY, Tsaturyan AK, Sluchanko NN, Levitsky DI (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. FEBS J 281: 2004–2016. https://doi.org/10.1111/febs.12756

    Article  CAS  PubMed  Google Scholar 

  32. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924. https://doi.org/10.1152/physrev.2000.80.2.853

    Article  CAS  PubMed  Google Scholar 

  33. Spiess M, Steinmetz MO, Mandinova A, Wolpensinger B, Aebi U, Atar D (1999) Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments. J Struct Biol 126: 98–104. https://doi.org/10.1006/jsbi.1999.4111

    Article  CAS  PubMed  Google Scholar 

  34. Margossian SS, Lowey S (1982) Preparation of Myosin and Its Subfragments from Rabbit Skeletal Muscle. Methods Enzymol 85: 55–71. https://doi.org/10.1016/0076-6879(82)85009-X

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  36. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92: 2199–2211. https://doi.org/10.1529/biophysj.106.081117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kopylova G, Nabiev S, Nikitina L, Shchepkin D, Bershitsky S (2016) The properties of the actin–myosin interaction in the heart muscle depend on the isoforms of myosin but not of α-actin. Biochem Biophys Res Commun 476: 648–653. https://doi.org/10.1016/j.bbrc.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  38. Rajan S, Jagatheesan G, Karam CN, Alves ML, Bodi I, Schwartz A, Bulcao CF, D’Souza KM, Akhter SA, Boivin GP, Dube DK, Petrashevskaya N, Herr AB, Hullin R, Liggett SB, Wolska BM, Solaro RJ, Wieczorek DF (2010) Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform. Circulation 121: 410–418. https://doi.org/10.1161/CIRCULATIONAHA.109.889725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was implemented using the equipment of the Shared Research Center of Scientific Equipment of Institute of Immunology and Physiology within the Governmental assignment to the Institute of Immunology and Physiology of the Russian Academy of Sciences; theme reg. no. 122022200089-4.

Author information

Authors and Affiliations

Authors

Contributions

Idea and design of the experiment: L.V.N. and O.P.G.; data collection and processing: O.P.G., V.O.V., I.K.P., and S.R.N.; manuscript writing and editing: O.P.G. and L.V.N.

Corresponding author

Correspondence to O. P. Gerzen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S0022093022070110.

10893_2022_8368_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerzen, O.P., Votinova, V.O., Potoskueva, I.K. et al. Characteristics of Actin—Myosin Interaction in Different Regions of Rat Heart. J Evol Biochem Phys 58 (Suppl 1), S98–S106 (2022). https://doi.org/10.1134/S0022093022070110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070110

Keywords:

Navigation