Skip to main content
Log in

Characterization of the Brain of the Red Mayan Octopus (Octopus maya Voss and Solis, 1966)

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Octopuses show a wide behavioral range that allows them great adaptability to their environment. This makes them a target of great interest for biophysics, cytology, and neurobiology studies. To adequately execute these investigations, it is essential to have a thorough understanding of the neuroanatomy of the species that function as good laboratory models, for example, O. maya. In this work, we undertake the task of extracting and characterizing various structures of the nervous system of O. maya at the level of lobes and connectivity between them. O. maya has great advantages as a research model for the neurobiology of cephalopods, such as being reproduced in captivity, having holobenthic larvae, an adequate size for analysis and performing its behavior out of hiding places and not burrowing. All this allows behavioral studies to be carried out more easily. In this study we have characterized the morphology of 30 lobes in the brain of O. maya from young and adult specimens and the cells that constitute the connectivity pathways between these regions. We also observed that the brains of O. maya at four weeks after hatching do not show a fully mature structure, but rather that some lobes related to somatosensory memory have low cell density and a simpler morphology than that of adult specimens. It is indicative of a maturation process that should be considered for future experimental designs. We hope that this nervous system mapping will increase the basis for more detailed investigations into the neurophysiology of O. maya and other octopuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Mather JA, Alupay JS (2016) An ethogram for Benthic Octopods (Cephalopoda: Octopodidae). J Comp Psychol 130: 109–127. https://doi.org/10.1037/com0000025

    Article  PubMed  Google Scholar 

  2. Nakajima R, Shigeno S, Zullo L, De Sio F, Schmidt MR (2018) Cephalopods Between Science, Art, and Engineering: A Contemporary Synthesis. Front Commun 3: 20. https://doi.org/10.3389/fcomm.2018.00020

    Article  Google Scholar 

  3. Hochner B, Glanzman DL (2016) Evolution of highly diverse forms of behavior in mollusks. Curr Biol 26(20): R965–R971. https://doi.org/10.1016/j.cub.2016.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fiorito G, Scotto P (1992) Observational Learning in Octopus Vulgaris. Science 256: 545–547. https://doi.org/10.1126/science.256.5056.545

    Article  CAS  PubMed  Google Scholar 

  5. Tomita M, Aoki S (2014) Visual Discrimination Learning in the Small Octopus Octopus ocellatus. Ethology 120: 863–872. https://doi.org/10.1111/eth.12258

    Article  Google Scholar 

  6. Bublitz A, Weinhold SR, Strobel S, Dehnhardt G, Hanke FD (2017) Reconsideration of Serial Visual Reversal Learning in Octopus (Octopus Vulgaris) from a Methodological Perspective. Front Physiol 8: 54. https://doi.org/10.3389/fphys.2017.00054

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuba MJ, Gutnick T, Burghardt GM, Darmaillacq AS, Dickel L (2014) Learning from play in octopus. In: Cephalopod Cognition. Cambridge University Press. pp 57–71. https://doi.org/10.1017/cbo9781139058964.006

    Chapter  Google Scholar 

  8. Kuba MJ, Byrne RA, Meisel DV, Mather JA (2006) When do octopuses play? Effects of repeated testing, object type, age, and food deprivation on object play in Octopus Vulgaris. J Comp Psychol 120(3): 184–190. https://doi.org/10.1037/0735-7036.120.3.184

    Article  PubMed  Google Scholar 

  9. Richter JN, Hochner B, Kuba MJ (2016) Pull or Push? Octopuses Solve a Puzzle Problem. PLoS One 11(3): e152084. https://doi.org/10.1371/journal.pone.0152048

    Article  CAS  Google Scholar 

  10. Tricarico E, Borrelli L, Gherardi F, Fiorito G (2011) I know my neighbor: individual recognition in Octopus Vulgaris. PLoS One 6(4): e18710. https://doi.org/10.1371/journal.pone.0018710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correia-Caeiro C (2019) What we don’t know about cephalopods and how to define them. Anim Sentience 4(26): 1–4. https://doi.org/10.51291/2377-7478.1509

    Article  Google Scholar 

  12. Hochner B (2012) An Embodied View of Octopus Neurobiology. Curr Biol 22(20): R887–R892. https://doi.org/10.1016/j.cub.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  13. Shigeno S, Andrews PLR, Ponte G, Fiorito G (2018) Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Front Physiol 9: 952. https://doi.org/10.3389/fphys.2018.00952

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosas C, Gallardo P, Mascaró M, Caamal-Monsreal C, Pascual C (2014) Octopus maya. In: Cephalopod Culture, 383–396. https://doi.org/10.1007/978-94-017-8648-5_20

    Chapter  Google Scholar 

  15. Walker JJ, Longo N, Bitterman ME (1970) The octopus in the laboratory. Handling, maintenance, training. Behav Res Methods 2(1): 15–18.

    Article  Google Scholar 

  16. Van-Heukelem WF (1976) Growth, bioenergetics and life-span of Octopus cyane and Octopus maya. University of Hawaii at Manoa 169(3): 299–315.

    Google Scholar 

  17. Voss GL, Solís-Ramírez M (1966) Octopus maya, a new species from the Bay of Campeche, Mexico. Bull Mar Sci 16: 615–625.

    Google Scholar 

  18. Rocío M, Defeo O (2022) Crecimiento del pulpo Octopus maya (Mollusca: Cephalopoda) de la costa de Yucatán, México: un análisis de largo plazo. Rev Bio Trop 49: 93–101. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442001000100010

    Google Scholar 

  19. Maldonado E, Rangel-Huerta E, González-Gómez R, Fajardo-Alvarado G, Morillo-Velarde PS (2019) Octopus insularis as a new marine model for EvoDevo. Biol Open 8: bio046086. https://doi.org/10.1242/bio.046086

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim BM, Kang S, Ahn DH, Jung SH, Rhee H, Yoo JS, Lee JE, Lee S, Han YH, Ryu KB, Cho SJ, Park H, An HS (2018) The genome of common long-arm octopus Octopus minor. GigaScience 7: giy119. https://doi.org/10.1093/gigascience/giy119

    Article  CAS  PubMed Central  Google Scholar 

  21. Borrelli L, Chiandetti C, Fiorito G (2020) A standardized battery of tests to measure Octopus Vulgaris behavioural performance. Invert Neurosci 20: 4. https://doi.org/10.1007/s10158-020-0237-7

    Article  PubMed  Google Scholar 

  22. Ventura-López C, López-Galindo L, Rosas C, Sánchez-Castrejón E, Galindo-Torres P, Pascual C, Galindo-Sánchez CE (2022) Sex-specific role of the optic gland in Octopus maya: A transcriptomic analysis. Gen Comp Endocrinol 320: 114000. https://doi.org/10.1016/j.ygcen.2022.114000

    Article  CAS  PubMed  Google Scholar 

  23. Wells MJ (1965) The Vertical Lobe and Touch Learning in the Octopus. J Exp Biol 42(2): 233–255. https://doi.org/10.1242/jeb.42.2.233

    Article  CAS  PubMed  Google Scholar 

  24. Young JZ (1971) The anatomy of the brain of Octopus vulgaris. Clarendon Press, Oxford, 1–690.

    Google Scholar 

  25. Koizumi M, Shigeno S, Mizunami M, Tanaka NK (2016) Three‐dimensional brain atlas of pygmy squid, Idiosepius paradoxes, revealing the largest relative vertical lobe system volume among the cephalopods. J Comp Neurol 524(10): 2142–2157. https://doi.org/10.1002/cne.23939

    Article  PubMed  Google Scholar 

  26. Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M (2001) Development of the Brain in the Oegopsid Squid, Todarodes pacificus: An Atlas from Hatchling to Juvenile. Zool Sci 18(8): 1081–1096. https://doi.org/10.2108/zsj.18.1081

    Article  Google Scholar 

  27. Jung SH, Song HY, Hyun YS, Kim YC, Whang I, Choi TY, Jo S (2018) A Brain Atlas of the Long Arm Octopus, Octopus minor. Exp Neurobiol 27(4): 257–266. https://doi.org/10.5607/en.2018.27.4.257

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chung WS, Kurniawan ND, Marshall NJ (2022) Comparative brain structure and visual processing in octopus from different habitats. Curr Biol 32(1): 97–110. https://doi.org/10.1016/j.cub.2021.10.070

    Article  CAS  PubMed  Google Scholar 

  29. Vergara-Ovalle F, Guerrero FA, Rosas C, Sanchez-Castillo H (2022) Novel Object Recognition in Octopus Maya. Res Square (preprint) https://doi.org/10.21203/rs.3.rs-1439375/v1

  30. Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D’Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PL (2015) Guidelines for the Care and Welfare of Cephalopods in Research –A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 49(2): 1–90. https://doi.org/10.1177/0023677215580006

    Article  PubMed  Google Scholar 

  31. Aceto J, Nourizadeh-Lillabadi R, Marée R, Dardenne N, Jeanray N, Wehenkel L, Aleström P, Muller M (2015) Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity. PLoS One, 10: e0126928. https://doi.org/10.1371/journal.pone.0126928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dickel L, Darmaillacq AS, Poirier R, Agin V (2005) Behavioral and neural maturation in the cuttlefish Sepia officinalis. Vie et Milieu 56: 89–95.

    Google Scholar 

  33. Liu YC, Liu TH, Su CH, Chiao CC (2017) Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in Cuttlefish Sepia pharaonic. Front Physiol 8: 538. https://doi.org/10.3389/fphys.2017.00538

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto M, Shimazaki Y, Shigeno S (2003) Atlas of the Embryonic Brain in the Pygmy Squid, Idiosepius paradoxes. Zool Sci 20(2): 163–179. https://doi.org/10.2108/zsj.20.163

    Article  Google Scholar 

  35. Shigeno S, Tsuchiya K, Segawa S (2001) Embryonic and paralarvae development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437(4): 449–475. https://doi.org/10.1002/cne.1295

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki A, Yoshida M, Uematsu K (2002) Post-Hatching Development of the Brain in Octopus ocellatus. Zool Sci 19(7): 763–771. https://doi.org/10.2108/zsj.19.763

    Article  Google Scholar 

  37. Giuditta A, Prozzo N (1974) Postembryonic growth of the optic lobe ofOctopus Vulgaris, lam. J Comp Neurol 157(2): 109–116. https://doi.org/10.1002/cne.901570202

    Article  CAS  PubMed  Google Scholar 

  38. Juárez O, Rosas C, Arena-Ortiz M (2012) Phylogenetic relationships of Octopus maya revealed by mtDNA sequences. Cienc Mar 38(3): 563–575. https://doi.org/10.7773/cm.v38i3.1962

    Article  CAS  Google Scholar 

  39. Gutnick T, Kuba MJ, Di Cosmo A (2022) Neuroecology: Forces that shap the octopus brain. Curr Biol 32(3): R131–R135. https://doi.org/10.1016/j.cub.2021.12.047

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

José Fabián Vergara-Ovalle would like to thank to the program Posgrade in Biological Sciences, (UNAM) the aquarium of the sciences school and “Consejo Nacional de Ciencia y Tecnología” (CONACYT) for the fellowship granted. The research leading to these results has received funding from the projects PAPIIT IN 208722 and PAPIME PE300918 granted to HSC.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Vergara-Ovalle, Sánchez Castillo; Methodology: Vergara-Ovalle; Formal analysis and investigation: Vergara-Ovalle; Writing: Vergara-Ovalle; Writing: review and editing: Sánchez Castillo; Funding acquisition, resources, and supervision: Sánchez Castillo.

Corresponding author

Correspondence to H. Sánchez-Castillo.

Ethics declarations

Compliance with Ethical Standards

All the experiments and handling animals were carried out under the approval of the bioethics committee of the Faculty of Psychology, UNAM, and following the directive 2010/63/EU (European parliament) [30].

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S0022093022050118.

Supplementary 1. Coronal cuts. The totality of sequential slides obtained from one of the brains of an adult specimen of O. maya is shown. Numbers indicate µm Posterior (P +) or Anterior (A –) from the midline of the brain. The lower side of each photograph corresponds to the ventral region, while the upper side of the photograph corresponds to the dorsal region. Bars represent 1000 µm. Cresyl violet staining.

10893_2022_8295_MOESM1_ESM.pdf

Supplementary 2. Sagittal cuts. The totality of sequential slides obtained from one of the brains of an adult specimen of O. maya is shown. Numbers indicate µm to the left (L –) from the midline of the brain. The right side of each photograph corresponds to the ventral region, while the left side of the photograph corresponds to the dorsal region. Bars represent 1000 µm. Cresyl violet staining.

10893_2022_8295_MOESM2_ESM.pdf

Supplementary 3. Transversal cuts. The totality of sequential slides obtained from one of the brains of an adult specimen of O. maya is shown. The lower side of each photograph corresponds to the anterior region, while the upper side of the photograph corresponds to the posterior region. Numbers indicate µm vertical (V +) or Dorsal (D –) from the midline of the brain. Bars represent 1000 µm. H&E staining.

10893_2022_8295_MOEMS3_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara-Ovalle, F., Gonzalez-Navarrete, A. & Sánchez-Castillo, H. Characterization of the Brain of the Red Mayan Octopus (Octopus maya Voss and Solis, 1966). J Evol Biochem Phys 58, 1401–1412 (2022). https://doi.org/10.1134/S0022093022050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050118

Keywords:

Navigation