Skip to main content
Log in

Effects of Ni2+ on Heart and Respiratory Rhythms in Newborn Rats

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of Ni2+, a T-type low-threshold calcium channel (T-VDCC) and Na+/Ca2+ exchanger (NCX) blocker, on cardiac and respiratory rhythm parameters was studied in newborn rats aged 3–16 days (P3–16). A distinct age dependence of the intensity of the arrhythmogenic effect evoked by calcium channel blockade was found. In 3-day-old rats injected with NiCl2 at a dose of 109 mg/kg (ED100), a transient atypical heart rhythm, representing the alternating periods of moderate bradycardia with a pathologically slow (up to 20–60 bpm) heart rhythm, occurs in 100% of animals. In parallel, a pronounced respiratory system dysfunction with burst breathing develops. This symptom complex occurs in 75% of 10–14-day-old rats and is completely absent in 15–16-day-old animals. Phenomenologically similar heart rhythm disorders are observed in newborn rats after NiCl2 injection, during poisoning with acetylcholinesterase inhibitors, and upon activation of the central N-cholinergic structures. The obtained data suggest that in the early period of rat postnatal ontogenesis, impaired mechanisms of calcium metabolism may play a certain role in the development of arrhythmogenic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov SV (1994) Reproduction of the Primary Rhythms of Excitation in Cardiac Activity of Neonatal Rat Pups. Bull Exp Biol Med 117(4): 421–423. https://doi.org/10.1007/BF02444201

    Article  Google Scholar 

  2. Kuznetsov SV, Goncharov NV, Glashkina LM (2005) Change of Parameters of Functioning of the Cardiovascular and Respiratory Systems in Rats of Different Ages under Effects of Low Doses of the Cholinesterase Inhibitor Phosphacol. J Evol Biochem Physiol 41(2): 201–210. https://doi.org/10.1007/s10893-005-0055-x

    Article  CAS  Google Scholar 

  3. Sizonov VА, Dmitrieva LE (2018) Heart Rhythm Disturbances Caused by Injection of Cholinesterase Inhibitor Physostigmine to Rats during the Early Ontogeny. Bull Exp Biol Med 165(1): 44–47. https://doi.org/10.1007/s10517-018-4095-9

    Article  CAS  Google Scholar 

  4. Kuznetsov SV, Kuznetsova NN, Gaydukova PA (2019) Influence of L-type slow calcium channels blockers on cardiac, respiratory and motor activity at the intact and poisoned by physostigmine (eserine) of rats during the early ontogeny. Reviews on Clinical Pharmacology and Drug Therapy 17: 39–49. https://doi.org/10.17816/RCF17339-49

    Article  Google Scholar 

  5. Kuznetsov SV, Kuznetsova NN (2021) Effects of high doses of ouabain on cardiac, respiratory, and motor activity at newborn rats. Reviews on Clinical Pharmacology and Drug Therapy 19: 395–403. https://doi.org/10.17816/RCF194395-403

    Article  Google Scholar 

  6. Kuznetsov SV, Kuznetsova NN (2020) Ontogenetic peculiarities of the effect of dantrolene and caffeine on the cardiac, respiratory and motor performance of intact and poisoned by physostigmine of rats. Reviews on Clinical Pharmacology and Drug Therapy 18: 139–148. https://doi.org/10.17816/RCF182139-148

    Article  Google Scholar 

  7. Massie BM (1997) Mibefradil: A Selective T-Type Calcium Antagonist. Am J Cardiol 80(9A): 23–32. https://doi.org/10.1016/s0002-9149(97)00791-1

    Article  Google Scholar 

  8. Hüser J, Blatter LA, Lipsius SL (2000) Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol 524(Pt2): 415–422. https://doi.org/10.1111/j.1469-7793.2000.00415.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83: 117–161. https://doi.org/10.1152/physrev.00018.2002

    Article  CAS  PubMed  Google Scholar 

  10. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/α1G T-type calcium channels. Circ Res 98: 1422–1430. https://doi.org/10.1161/01.RES.0000225862.14314.49

    Article  CAS  PubMed  Google Scholar 

  11. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88: 919–982. https://doi.org/10.1152/physrev.00018.2007

    Article  CAS  PubMed  Google Scholar 

  12. Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF (2003) Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels. Circ Res 93: 1241–1248. https://doi.org/10.1161/01.RES.0000106134.69300.B7

    Article  CAS  PubMed  Google Scholar 

  13. Schaffer SW, Jong CJ (2015) Regulation of Cardiac Hypertrophy by T-Type Ca2+ Channel. In: T-type Calcium Channels in Basic and Clinical Science. Springer-Verlag, Wien, 73–84. https://doi.org/10.1007/978-3-7091-1413-1

    Chapter  Google Scholar 

  14. Vassort G, Talavera K, Alvarez JL (2006) Role of T-type Ca2+ channels in the heart. Cell Calcium 640: 205–220. https://doi.org/10.1016/j.ceca.2006.04.025

    Article  CAS  Google Scholar 

  15. Suzuki S, Ohkusa T, Ono K, Sato T, Yoshida M, Yano M, Takebayashi S, Matsuzaki M (2007) Beneficial effects of the dual L- and T-type Ca2+ channel blocker efonidipine on cardiomyopathic hamsters. Circ J 71(12): 1970–1976. https://doi.org/10.1253/circj.71.1970

    Article  CAS  PubMed  Google Scholar 

  16. Studer R, Reinecke H, Vetter R, Holtz J, Drexler H (1997) Expression and function of the cardiac Na+/Ca2+ exchanger in postnatal development of the rat, in experimental-induced cardiac hypertrophy and in the failing human heart. Basic Res Cardiol 92(1): 53–58. https://doi.org/10.1007/BF00794068

    Article  CAS  PubMed  Google Scholar 

  17. Ferron L, Capuano V, Deroubaix E, Coulombe A, Renaud JF (2002) Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 34: 533–546. https://doi.org/10.1006/jmcc.2002.1535

    Article  CAS  PubMed  Google Scholar 

  18. Satoh H (1995) Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. General Pharmacology 26(3): 581–587. https://doi.org/10.1016/0306-3623(94)00214-8

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys J 77(6): 3034–3042. https://doi.org/10.1016/S0006-3495(99)77134-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A Molecular Determinant of Nickel Inhibition in Cav3.2 T-type Calcium Channels. J Biol Chem 281(8): 4823–4830. https://doi.org/10.1074/jbc.M510197200

    Article  CAS  PubMed  Google Scholar 

  21. Haverinen J, Hassinen M, Dash NS, Vornanen M (2018) Expression of calcium channel transcripts in the zebrafish heart: dominance of T-type channels. J Exp Biol 221(Pt 10): jeb179226. https://doi.org/10.1242/jeb.179226

    Article  PubMed  Google Scholar 

  22. Kimura J, Miyamae S, Noma A (1987) Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384: 199–222. https://doi.org/10.1113/jphysiol.1987.sp016450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reppel M, Fleischmann BK, Reuter H, Pillekamp F, Schunkert H, Hescheler J (2007) Regulation of Na+/Ca2+ exchange current in the normal and failing heart. Ann N Y Acad Sci 1099: 361–372. https://doi.org/10.1196/annals.1387.065

    Article  CAS  PubMed  Google Scholar 

  24. Cheng H, Smith GL, Hancox JC, Orchard CH (2011) Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase. Cell Calcium 49(1): 56–65. https://doi.org/10.1016/j.ceca.2010.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henderson RG, Durando J, Oller AR, Merkel DJ, Marone PA, Bates HK (2012) Acute oral toxicity of nickel compounds. Regulatory Toxicology and Pharmacology 62(3): 425–432. https://doi.org/10.1016/j.yrtph.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  26. Singh PP, Junnarkar AY (1991) Behavioural and toxic profile of some essential trace metal salts in mice and rats. Ind J Pharmacol 23: 153–159.

    CAS  Google Scholar 

  27. Yan XM, Tao ZQ, Liang YY, Chen ZJ, Zhang JS, Xu XH (1998) Effect of catecholamic acid on detoxication and distribution of NiCl2 in mice and rats. Acta Pharmacologica Sinica 19(1): 80–84.

    CAS  PubMed  Google Scholar 

  28. Leuranguer V, Monteil A, Bourinet E, Dayanithi G, Nargeot J (2000) T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. Am. J Physiol Heart Circ Physiol 279: H2540–2548. https://doi.org/10.1152/10.1152/ajpheart.2000.279.5.H2540

    Article  CAS  Google Scholar 

  29. Xu X, Best PM (1992) Postnatal changes in T-type calcium current density in rat atrial myocytes. J Physiol 454(1): 657–672. https://doi.org/10.1113/jphysiol.1992.sp019285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T, Namiki A, Tohse N (2003) Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc Res 58(3): 535–548. https://doi.org/10.1016/s0008-6363(03)00255-4

    Article  CAS  PubMed  Google Scholar 

  31. Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Mejia-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286(3): H971–978. https://doi.org/10.1152/ajpheart.00308.2003

    Article  CAS  PubMed  Google Scholar 

  32. Kuznetsov SV (1995) N-cholinergic activation of periodic activity of excitable structures in early postnatal ontogenesis. J Evol Biochem Physiol 31(2): 100–105.

    Google Scholar 

  33. Chavez J, Vargas MH, Cruz-Valderrama JE, Montaño LM (2011) Non-quantal release of acetylcholine in guinea-pig airways: role of choline transporter. Experimental Physiology 96(4): 460–467. https://doi.org/10.1113/expphysiol.2010.056440

    Article  CAS  PubMed  Google Scholar 

  34. Miyawaki T, Goodchild AK, Pilowsky PM (2003) Maintenance of sympathetic tone by a nickel chloride-sensitive mechanism in the rostral ventrolateral medulla of the adult rat. Neuroscience 116(2): 455–464. https://doi.org/10.1016/s0306-4522(02)00705-4

    Article  CAS  PubMed  Google Scholar 

  35. Fan Y-P, Horn EM, Waldrop TG (2000) Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability. J Neurophysiol 84: 2896–2903. https://doi.org/10.1152/jn.2000.84.6.2896

    Article  CAS  PubMed  Google Scholar 

  36. Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and Calcium Current-Mediated Pacemaker Neurons and Respiratory Rhythm Generation. J Neurosci 25(2): 446–453. https://doi.org/10.1523/JNEUROSCI.2237-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Onimaru H, Ballanyi K, Richter DW (1996) Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats. J Physiol 491(Pt 3): 677–695. https://doi.org/10.1113/jphysiol.1996.sp021249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koban MU, Moorman AF, Holtz J, Yacoub MH, Boheler KR (1998) Expressional analysis of the cardiac Na-Ca exchanger in rat development and senescence. Cardiovasc Res 37(2): 405–423. https://doi.org/10.1016/s0008-6363(97)00276-9

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. S.M. Korotkov (IEPhB RAS) for valuable comments during preparation of the manuscript.

Funding

The work was supported by the IEPhB Research Program 075-0152-22-00 and implemented using the IEPhB Research Resource Center.

Author information

Authors and Affiliations

Authors

Contributions

S.V. Kuznetsov carried out the planning, data collection and processing, writing and editing the manuscript. N.N. Kuznetsova was responsible for preparing and conducting the experiments, as well as data processing.

Corresponding author

Correspondence to S. V. Kuznetsov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no evident and potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 5, pp. 432–448https://doi.org/10.31857/S0044452922050060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V., Kuznetsova, N.N. Effects of Ni2+ on Heart and Respiratory Rhythms in Newborn Rats. J Evol Biochem Phys 58, 1367–1380 (2022). https://doi.org/10.1134/S0022093022050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050088

Keywords:

Navigation