Skip to main content
Log in

Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular ATP and nicotinamide adenine dinucleotide (β-NAD) demonstrate properties of neurotransmitters and neuromodulators in peripheral and central nervous system. It has been shown previously that ATP and β-NAD affect cardiac functioning in adult mammals. Nevertheless, the modulation of cardiac activity by purine compounds in the early postnatal development is still not elucidated. Also, the potential influence of ATP and β-NAD on cholinergic neurotransmission in the heart has not been investigated previously. Age-dependence of electrophysiological effects produced by extracellular ATP and β-NAD was studied in the rat myocardium using sharp microelectrode technique. ATP and β-NAD could affect ventricular and supraventricular myocardium independent from autonomic influences. Both purines induced reduction of action potentials (APs) duration in tissue preparations of atrial, ventricular myocardium, and myocardial sleeves of pulmonary veins from early postnatal rats similarly to myocardium of adult animals. Both purine compounds demonstrated weak age-dependence of the effect. We have estimated the ability of ATP and β-NAD to alter cholinergic effects in the heart. Both purines suppressed inhibitory effects produced by stimulation of intracardiac parasympathetic nerve in right atria from adult animals, but not in preparations from neonates. Also, ATP and β-NAD suppressed rest and evoked release of acetylcholine (ACh) in adult animals. β-NAD suppressed effects of parasympathetic stimulation and ACh release stronger than ATP. In conclusion, ATP and β-NAD control the heart at the postsynaptic and presynaptic levels via affecting the cardiac myocytes APs and ACh release. Postsynaptic and presynaptic effects of purines may be antagonistic and the latter demonstrates age-dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AF:

Atrial fibrillation

AP:

Action potential

APD:

Action potential duration

APD90:

Action potential duration at 90% of repolarization

LA:

Left atrium

NST:

Neostigmine

P1:

1st day of postnatal development

P14:

14st day of postnatal development

P21:

21st day of postnatal development

PV:

Pulmonary vein

RA:

Right atrium

RV:

Right ventricular wall

SAP:

Spontaneous action potential

β-NAD:

β-nicotinamide adenine dinucleotide

References

  1. Hoyle CH, Burnstock G (1986) Evidence that ATP is a neurotransmitter in the frog heart. Eur J Pharmacol 124:285–289

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (2009) Purinergic cotransmission. F1000 Biol Rep 1:46. https://doi.org/10.3410/B1-46

    Article  PubMed Central  PubMed  Google Scholar 

  3. Burnstock G (2013) Cotransmission in the autonomic nervous system. Handb Clin Neurol 117:23–35. https://doi.org/10.1016/B978-0-444-53491-0.00003-1

    Article  PubMed  Google Scholar 

  4. Kennedy C (2015) ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 191:2–15. https://doi.org/10.1016/j.autneu.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  5. Alefishat E, Alexander SPH, Ralevic V (2015) Effects of NAD at purine receptors in isolated blood vessels. Purinergic Signal 11:47–57. https://doi.org/10.1007/s11302-014-9428-1

    Article  CAS  PubMed  Google Scholar 

  6. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 104:16359–16364. https://doi.org/10.1073/pnas.0705510104

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972. https://doi.org/10.1113/jphysiol.2011.224634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players. Pharmacol Ther 144:162–191. https://doi.org/10.1016/j.pharmthera.2014.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Burnstock G, Hoyle CH (1985) Actions of adenine dinucleotides in the Guinea-pig taenia coli: NAD acts indirectly on P1-purinoceptors; NADP acts like a P2-purinoceptor agonist. Br J Pharmacol 84:825–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pustovit KB, Kuzmin VS, Sukhova GS (2015) Effect of exogenous extracellular nicotinamide adenine dinucleotide (nad+) on bioelectric activity of the pacemaker and conduction system of the heart. Bull Exp Biol Med 159(2):188–191. https://doi.org/10.1007/s10517-015-2919-4

    Article  CAS  PubMed  Google Scholar 

  11. Smyth LM, Bobalova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN (2004) Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J Biol Chem 279:48893–48903. https://doi.org/10.1074/jbc.M407266200

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro JA, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54:213–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ribeiro JA, Cunha RA, Correia-de-Sa P, Sebastiao AM (1996) Purinergic regulation of acetylcholine release. Prog Brain Res 109:231–241

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G, Cocks T, Crowe R, Kasakov L (1978) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63:125–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Breen LT, Smyth LM, Yamboliev IA, Mutafova-Yambolieva VN (2006) Beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle. Am J Physiol Renal Physiol 290:F486–F495. https://doi.org/10.1152/ajprenal.00314.2005

    Article  CAS  PubMed  Google Scholar 

  16. Cheung K, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228(2):254–266. https://doi.org/10.1002/dvdy.10378

    Article  CAS  PubMed  Google Scholar 

  17. Bogdanov Y, Rubino A, Burnstock G (1998) Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci 62(8):697–703

    Article  CAS  PubMed  Google Scholar 

  18. Webb TE, Boluyt MO, Barnard EA (1996) Molecular biology of P2Y purinoceptors: expression in rat heart. J Auton Pharmacol 16:303–307

    Article  CAS  PubMed  Google Scholar 

  19. Tsai KJ, Tsai YC, Shen CK (2007) G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J Exp Med 204(6):1273–1280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Petrov AM, Naumenko NV, Uzinskaya KV, Giniatullin AR, Urazaev AK, Zefirov AL (2011) Increased non-quantal release of acetylcholine after inhibition of endocytosis by methyl-β-cyclodextrin: the role of vesicular acetylcholine transporter. Neuroscience 186:1–12. https://doi.org/10.1016/j.neuroscience.2011.04.051

    Article  CAS  PubMed  Google Scholar 

  21. Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM (2015) β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 765:140–153. https://doi.org/10.1016/j.ejphar.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  22. Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2010) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. 95(2):265–273. https://doi.org/10.1113/expphysiol.2009.050302

  23. Anikina TA, Bilalova GA, Zverev AA, Sitdikov FG (2007) Effect of ATP and its analogs on contractility of rat myocardium during ontogeny. Bull Exp Biol Med 144:4–7. https://doi.org/10.1007/s10517-007-0239-z

    Article  CAS  PubMed  Google Scholar 

  24. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767–806

    Article  CAS  PubMed  Google Scholar 

  25. Kuzmin VS, Pustovit KB, Abramochkin DV (2016) Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors. J Biomed Sci 23(50):50. https://doi.org/10.1186/s12929-016-0267-y

    Article  PubMed Central  PubMed  Google Scholar 

  26. Doisne N, Maupoil V, Cosnay P, Findlay I (2009) Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. Am J Physiol Heart Circ Physiol 297(1):H102–H108. https://doi.org/10.1152/ajpheart.00256.2009

    Article  CAS  PubMed  Google Scholar 

  27. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666

    Article  CAS  PubMed  Google Scholar 

  28. Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91(1):265–325

    Article  PubMed  Google Scholar 

  29. Sharma AD, Klein GJ (1988) Comparative quantitative electrophysiologic effects of adenosine triphosphate on the sinus node and atrioventricular node. Am J Cardiol 61:330–335

    Article  CAS  PubMed  Google Scholar 

  30. Pelleg A, Belhassen B (2010) The mechanism of the negative chronotropic and dromotropic actions of adenosine 5′-triphosphate in the heart: an update. J Cardiovasc Pharmacol 56:106–109. https://doi.org/10.1097/FJC.0b013e3181e0f8b2

    Article  CAS  PubMed  Google Scholar 

  31. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pelleg A (2017) Electrophysiologic effects of adenosine versus ATP. J Cardiovasc Electrophysiol 28:E5. https://doi.org/10.1111/jce.13243

    Article  PubMed  Google Scholar 

  33. Billington RA, Bruzzone S, De Flora A, Genazzani AA, Koch-Nolte F, Ziegler M, Zocchi E (2006) Emerging functions of extracellular pyridine nucleotides. Mol Med 12:324–327. https://doi.org/10.2119/2006-00075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schwarz N, Fliegert R, Adriouch S, Seman M, Guse AH, Haag F, Koch-Nolte F (2009) Activation of the P2X7 ion channel by soluble and covalently bound ligands. Purinergic Signal 5:139–149. https://doi.org/10.1007/s11302-009-9135-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4(1):1–20. https://doi.org/10.1007/s11302-007-9078-7

    Article  CAS  PubMed  Google Scholar 

  36. Hwang S, Blair P, Durnin L, Mutafova-Yambolieva V, Sanders K, Ward S (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590(8):1957–1972. https://doi.org/10.1113/jphysiol.2011.224634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, Usai C, Meis S, Kassack MU, Zocchi E, De Flora A (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429. https://doi.org/10.1074/jbc.M606625200

    Article  CAS  PubMed  Google Scholar 

  38. Dreisig K, Kornum BR (2016) A critical look at the function of the P2Y11 receptor. Purinergic Signal 12(3):427–437. https://doi.org/10.1007/s11302-016-9514-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kennedy C (2017) P2Y(11) receptors: properties, distribution and functions. Adv Exp Med Biol 1051:107–122. https://doi.org/10.1007/5584

    Article  PubMed  Google Scholar 

  40. Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M (2017) Purinergic P2Y receptors: molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 180:113–128. https://doi.org/10.1016/j.pharmthera.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  41. Abramochkin DV, Tapilina SV, Sukhova GS, Nikolsky EE, Nurullin LF (2012) Functional M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart. Pflugers Arch 463(4):523–529. https://doi.org/10.1007/s00424-012-1075-1

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Lu Y, Wang Z (2007) Function of cardiac M3 receptors. Auton Autocoid Pharmacol 27:1–11. https://doi.org/10.1111/j.1474-8673.2006.00381.x

    Article  Google Scholar 

  43. Tapilina SV, Abramochkin DV (2016) Decrease in the sensitivity of myocardium to M3 muscarinic receptor stimulation during postnatal ontogenisis. Acta Nat 8(2):127–131

    CAS  Google Scholar 

  44. Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM (2018) Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 19:638–653. https://doi.org/10.1038/s41580-018-0049-3

    Article  CAS  PubMed  Google Scholar 

  45. Glitsch HG, Pott L (1978) Effects of acetylcholine and parasympathetic nerve stimulation on membrane potential in quiescent guinea-pig atria. J Physiol 279:655–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Takei M, Furukawa Y, Narita M, Ren LM, Karasawa Y, Murakami M, Chiba S (1991) Synergistic nonuniform shortening of atrial refractory period induced by autonomic stimulation. Am J Phys 261:H1988–H1993

    CAS  Google Scholar 

  47. Chiba S (1978) Selective stimulation of intracardiac pre-ganglionic vagal fibres of the dog atrium. Clin Exp Pharmacol Physiol 5:465–469

    Article  CAS  PubMed  Google Scholar 

  48. Ribeiro JA, Walker J (1973) Action of adenosine triphosphate on endplate potentials recorded from muscle fibres of the rat-diaphragm and frog sartorius. Br J Pharmacol 49:724–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ribeiro J, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54(2):213–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Guarracino JF, Cinalli AR, Fernandez V, Roquel LI, Losavio AS (2016) P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 326:31–44. https://doi.org/10.1016/j.neuroscience.2016.03.066

    Article  CAS  PubMed  Google Scholar 

  51. Ribeiro JA, Dominguez ML (1978) Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J Physiol 74:491–496

    CAS  Google Scholar 

  52. Pelleg A, Hurt CM, Hewlett EL (1996) ATP shortens atrial action potential duration in the dog: role of adenosine, the vagus nerve, and G protein. Can J Physiol Pharmacol 74:15–22

    Article  CAS  PubMed  Google Scholar 

  53. Marvin WJ Jr, Hermsmeyer K, McDonald RI, Roskoski LM, Roskoski R Jr (1980) Ontogenesis of cholingergic innervation in the rat heart. Circ Res 46(5):690–695

    Article  CAS  PubMed  Google Scholar 

  54. Vyskocil F, Malomouzh AI, Nikolsky EE (2009) Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58(6):763–784

    CAS  PubMed  Google Scholar 

  55. Nassenstein C, Wiegand S, Lips KS, G4 L, Klein J, Kummer W (2015) Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters. 29(1):173–180. https://doi.org/10.1016/j.intimp.2015.08.007

  56. Malomouzh AI, Nikolsky EE, Vyskocil F (2011) Purine P2Y receptors in ATP-mediated regulation of non-quantal acetylcholine release from motor nerve endings of rat diaphragm. Neurosci Res 71:219–225. https://doi.org/10.1016/j.neures.2011.07.1829

    Article  CAS  PubMed  Google Scholar 

  57. Galkin AV, Giniatullin RA, Mukhtarov MR, Svandova I, Grishin SN, Vyskocil F (2001) ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction. Eur J Neurosci 13:2047–2053

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Russian Science Foundation grant 14-15-00268.

Author information

Authors and Affiliations

Authors

Contributions

Participated in the study planning: Kuzmin VS.

Performed experiments and data analysis: Pustovit KB, Potekhina VM, Ivanova AD.

Contributed to the discussion and reviewed/edited the manuscript: Petrov AM.

Wrote the manuscript: Abramochkin DV, Kuzmin VS.

Corresponding author

Correspondence to Vlad S. Kuzmin.

Ethics declarations

Conflicts of interest

Pustovit KB declares that she has no conflict of interest.

Potekhina VM declares that she has no conflict of interest.

Ivanova AD declares that she has no conflict of interest.

Petrov AM declares that he has no conflict of interest.

Abramochkin DV declares that he has no conflict of interest.

Kuzmin VS declares that he has no conflict of interest.

Ethical approval

This study was approved by Bioethics Committee of Moscow State University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovit, K.B., Potekhina, V.M., Ivanova, A.D. et al. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signalling 15, 107–117 (2019). https://doi.org/10.1007/s11302-019-09645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09645-6

Keywords

Navigation