Skip to main content
Log in

Melanocortin 1 Receptors in the Hypothalamus of Mice within the Norm and in Diet-Induced Obesity

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The hypothalamic melanocortin system plays a key role in the regulation of eating behavior and peripheral metabolism, and its activity changes significantly in metabolic disorders. However, the possible role of the melanocortin 1 receptor (MC1R) in these processes remains unclear, while the data on the expression and localization of the MC1R in the hypothalamus of vertebrates are quite fragmentary. The aim of this work was to study the expression and distribution of MC1Rs in the hypothalamus of control mice and those with diet-induced obesity (DIO) as compared to the expression of other components of the melanocortin system and the hypothalamic localization of the microglial inflammatory (microgliosis) marker protein Iba1. DIO was induced in female C57Bl/6J mice by a 16-week diet enriched in light carbohydrates and saturated fats, which also led to impaired glucose tolerance, hyperleptinemia and hyperinsulinemia. Double fluorescence immunolabeling localized MC1Rs to pro-opiomelanocortin (POMC)-immunopositive neurons of the hypothalamic arcuate nucleus (ARC). In DIO, the amount of MC1Rs and POMC in hypothalamic neurons increased significantly. In addition, mRNA levels of MC1R, MC3R and POMC increased in the hypothalamus of DIO mice, indicative of an increase in the expression of the main melanocortin system’s components in DIO. In the hypothalamic ARC of DIO mice, the Iba1 level, as estimated by the intensity of immunohistochemical labeling, was also elevated, suggesting a relationship between MC1R signaling cascades and the activity of inflammatory processes in the hypothalamus under DIO conditions. Thus, we have established the expression of MC1Rs and their localization on POMC-immunopositive neurons of the hypothalamic ARC, as well as their increase in DIO and a possible relationship with the hypothalamic expression of POMC and Iba1. These findings may indicate the role of the MC1R as a potential regulator of peripheral metabolism and neuroinflammation under normal conditions and in metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 7: 736–749. https://doi.org/10.1210/er.2006-0034

    Article  CAS  Google Scholar 

  2. Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1(3): FSO25. https://doi.org/10.4155/fso.15.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldini G, Phelan KD (2019) The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 241(1): R1–R33. https://doi.org/10.1530/JOE-18-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C (2020) The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 12(11): 3502. https://doi.org/10.3390/nu12113502

    Article  CAS  PubMed Central  Google Scholar 

  5. Zhou Y, Cai M (2017) Novel approaches to the design of bioavailable melanotropins. Expert Opin Drug Discov 12(10): 1023–1030. https://doi.org/10.1080/17460441.2017.1351940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindberg I, Fricker LD (2021) Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models. Endocrinology 162(12): bqab155. https://doi.org/10.1210/endocr/bqab155

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues AR, Almeida H, Gouveia AM (2015) Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 72(7): 1331–1345. https://doi.org/10.1007/s00018-014-1800-3

    Article  CAS  PubMed  Google Scholar 

  8. Li YQ, Shrestha Y, Pandey M, Chen M, Kablan A, Gavrilova O, Offermanns S, Weinstein LS (2016) G(q/11)α and G(s)α mediate distinct physiological responses to Central melanocortins. J Clin Invest 126(1): 40–49. https://doi.org/10.1172/JCI76348

    Article  PubMed  Google Scholar 

  9. Mountjoy KG (2010) Distribution and function of melanocortin receptors within the brain. Adv Exp Med Biol 681: 29–48. https://doi.org/10.1007/978-1-4419-6354-3_3

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Li X, Zhou Y, Cui L, Li J, Wu C, Wan Y, Li J, Wang Y (2017) The interaction of MC3R and MC4R with MRAP2, ACTH, α-MSH and AgRP in chickens. J Endocrinol 234(2): 155–174. https://doi.org/10.1530/JOE-17-0131

    Article  CAS  PubMed  Google Scholar 

  11. Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS (2013) Malignant melanoma and melanocortin 1 receptor. Biochemistry (Mosc) 78(11): 1228–1237. https://doi.org/10.1134/S0006297913110035.

  12. Chen X, Chen H, Cai W, Maguire M, Ya B, Zuo F, Logan R, Li H, Robinson K, Vanderburg CR, Yu Y, Wang Y, Fisher DE, Schwarzschild MA (2017) The melanoma-linked “redhead” MC1R influences dopaminergic neuron survival. Ann Neurol 81(3): 395–406. https://doi.org/10.1002/ana.24852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Chawla MK, Rios-Monterrosa JL, Wang L, Zempare MA, Hruby VJ, Barnes CA, Cai M (2021) Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions. Molecules 26(20): 6266. https://doi.org/10.3390/molecules26206266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX (2020) Regulation of melanocortin-1 receptor pharmacology by melanocortin receptor accessory protein 2 in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 285: 113291. https://doi.org/10.1016/j.ygcen.2019.113291

    Article  CAS  PubMed  Google Scholar 

  15. Ayers KL, Glicksberg BS, Garfield AS, Longerich S, White JA, Yang P, Du L, Chittenden TW, Gulcher JR, Roy S, Fiedorek F, Gottesdiener K, Cohen S, North KE, Schadt EE, Li SD, Chen R, Van der Ploeg LHT (2018) Melanocortin 4 Receptor Pathway Dysfunction in Obesity: Patient Stratification Aimed at MC4R Agonist Treatment. J Clin Endocrinol Metab 103(7): 2601–2612. https://doi.org/10.1210/jc.2018-00258

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH (2021) The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 48: 101206. https://doi.org/10.1016/j.molmet.2021.101206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO (2018) The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res 43(4): 821–837. https://doi.org/10.1007/s11064-018-2485-z

    Article  CAS  PubMed  Google Scholar 

  18. Derkach KV, Bondareva VM, Chistyakova OV, Berstein LM, Shpakov AO (2015) The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. Int J Endocrinol 2015: 245459. https://doi.org/10.1155/2015/245459

    Article  PubMed  PubMed Central  Google Scholar 

  19. Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14(3): e0213779. https://doi.org/10.1371/journal.pone.0213779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113 (Pt 17): 3073–3084. https://doi.org/10.1242/jcs.113.17.3073

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ, Filosa J, Stern JE, Perez-Tilve D, Schwartz MW, Tschöp MH, Yi CX (2014) Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62(1): 17–25. https://doi.org/10.1002/glia.22580

    Article  PubMed  Google Scholar 

  22. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD (2016) Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 233(9): 1637–1650. https://doi.org/10.1007/s00213-016-4218-9

  23. Romanova IV, Mikhailova EV, Shpakov AO (2019) Immunochemical Identification of Melanocortin and Leptin Receptors on Serotoninergic Neurons in the Rat Midbrain. Neurosci Behav Physiol 49 (7): 832–837. https://doi.org/10.1007/s11055-019-00809-w

    Article  CAS  Google Scholar 

  24. Paxinos G, Franklin KBJ (2019) The Mouse Brain in Stereotaxic Coordinates. 5th ed. Hardcover. ISBN: 9780128161579, eBook ISBN: 9780128161586.

    Google Scholar 

  25. Maioli TU, Gonçalves JL, Miranda MC, Martins VD, Horta LS, Moreira TG, Godard AL, Santiago AF, Faria AM (2016) High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice. Inflamm Res 65(2): 169–178. https://doi.org/10.1007/s00011-015-0902-1

    Article  CAS  PubMed  Google Scholar 

  26. Murtaza M, Khan G, Aftab MF, Afridi SK, Ghaffar S, Ahmed A, Hafizur RM, Waraich RS (2017) Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway. PLoS One 12(6): e0178910. https://doi.org/10.1371/journal.pone.0178910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pretz D, Le Foll C, Rizwan MZ, Lutz TA, Tups A (2021) Hyperleptinemia as a contributing factor for the impairment of glucose intolerance in obesity. FASEB J 35(2): e21216. https://doi.org/10.1096/fj.202001147R

    Article  CAS  PubMed  Google Scholar 

  28. Huang XF, Han M, South T, Storlien L (2003) Altered levels of POMC, AgRP and MC4R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res 992(1): 9–19. https://doi.org/10.1016/j.brainres.2003.08.019

    Article  CAS  PubMed  Google Scholar 

  29. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5(3): 181–194. https://doi.org/10.1016/j.cmet.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  30. Gout J, Sarafian D, Tirard J, Blondet A, Vigier M, Rajas F, Mithieux G, Begeot M, Naville D (2008) Leptin infusion and obesity in mouse cause alterations in the hypothalamic melanocortin system. Obesity (Silver Spring) 16(8): 1763–1769. https://doi.org/10.1038/oby.2008.303

  31. Gamber KM, Huo L, Ha S, Hairston JE, Greeley S, Bjørbæk C (2012) Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS One 7(1): e30485. https://doi.org/10.1371/journal.pone.0030485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salazar-Onfray F, López M, Lundqvist A, Aguirre A, Escobar A, Serrano A, Korenblit C, Petersson M, Chhajlani V, Larsson O, Kiessling R (2002) Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br J Cancer 87(4): 414–422. https://doi.org/10.1038/sj.bjc.6600441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rinne P, Rami M, Nuutinen S, Santovito D, van der Vorst EPC, Guillamat-Prats R, Lyytikäinen LP, Raitoharju E, Oksala N, Ring L, Cai M, Hruby VJ, Lehtimäki T, Weber C, Steffens S (2017) Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages. Circulation 136(1): 83–97. https://doi.org/10.1161/CIRCULATIONAHA.116.025889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kadiri JJ, Tadayon S, Thapa K, Suominen A, Hollmén M, Rinne P (2021) Melanocortin 1 Receptor Deficiency in Hematopoietic Cells Promotes the Expansion of Inflammatory Leukocytes in Atherosclerotic Mice. Front Immunol 12: 774013. https://doi.org/10.3389/fimmu.2021.774013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mioni C, Giuliani D, Cainazzo MM, Leone S, Bazzani C, Grieco P, Novellino E, Tomasi A, Bertolini A, Guarini S (2003) Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. Eur J Pharmacol 477(3): 227–234. https://doi.org/10.1016/s0014-2999(03)02184-8

    Article  CAS  PubMed  Google Scholar 

  36. Catania A, Lonati C, Sordi A, Carlin A, Leonardi P, Gatti S (2010) The melanocortin system in control of inflammation. Scient World J 14(10): 1840–1853. https://doi.org/10.1100/tsw.2010.173.; PMCID: PMC5763663

    Article  Google Scholar 

  37. Wang W, Guo DY, Lin YJ, Tao YX (2019) Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 10: 683. https://doi.org/10.3389/fendo.2019.00683

  38. Fu C, Chen J, Lu J, Yi L, Tong X, Kang L, Pei S, Ouyang Y, Jiang L, Ding Y, Zhao X, Li S, Yang Y, Huang J, Zeng Q (2020) Roles of inflammation factors in melanogenesis (Review). Mol Med Rep 21(3): 1421–1430. https://doi.org/10.3892/mmr.2020.10950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu W, Mo J, Ocak U, Travis ZD, Enkhjargal B, Zhang T, Wu P, Peng J, Li T, Zuo Y, Shao A, Tang J, Zhang J, Zhang JH (2020) Activation of Melanocortin 1 Receptor Attenuates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage viathe Suppression of Neuroinflammation through AMPK/TBK1/NF-κB Pathway in Rats. Neurotherapeutics 17(1): 294–308. https://doi.org/10.1007/s13311-019-00772-x

    Article  CAS  PubMed  Google Scholar 

  40. Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J, Zhang JH (2021) Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism–via–AMPK/SIRT1/PGC-1α pathway in rats. Theranostics 11(2): 522–539. https://doi.org/10.7150/thno.49426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu S, Doycheva DM, Gamdzyk M, Gao Y, Guo Y, Travis ZD, Tang J, Chen WX, Zhang JH (2022) BMS-470539 Attenuates Oxidative Stress and Neuronal Apoptosis via MC1R/cAMP/PKA/Nurr1 Signaling Pathway in a Neonatal Hypoxic-Ischemic Rat Model. Oxid Med Cell Longev 2022: 4054938. https://doi.org/10.1155/2022/4054938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohsawa K, Imai Y, Sasaki Y, Kohsaka S (2004) Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 88(4): 844–856. https://doi.org/10.1046/j.1471-4159.2003.02213.x

    Article  CAS  PubMed  Google Scholar 

  43. Leyh J, Winter K, Reinicke M, Ceglarek U, Bechmann I, Landmann J (2021) Long-term diet-induced obesity does not lead to learning and memory impairment in adult mice. PLoS One 16(9): e0257921. https://doi.org/10.1371/journal.pone.0257921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waise TMZ, Toshinai K, Naznin F, NamKoong C, Md Moin AS, Sakoda H, Nakazato M (2015) One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun. 464(4): 1157–1162. https://doi.org/10.1016/j.bbrc.2015.07.097

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was state budget funded (theme reg. no. ААА-А18-118012290427-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (I.V.R., A.O.Sh.), data collection (E.V.M., K.V.D., I.V.R.), data processing (E.V.M., K.V.D., I.V.R.), writing and editing the manuscript (A.O.Sh., I.V.R.).

Corresponding author

Correspondence to I. V. Romanova.

Ethics declarations

СONFLICT OF INTEREST

The authors declare that they have no conflict of interest that might be associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 8, pp. 1015–1027https://doi.org/10.31857/S0869813922080052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, E.V., Derkach, K.V., Shpakov, A.O. et al. Melanocortin 1 Receptors in the Hypothalamus of Mice within the Norm and in Diet-Induced Obesity. J Evol Biochem Phys 58, 1240–1250 (2022). https://doi.org/10.1134/S0022093022040263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040263

Keywords:

Navigation