Skip to main content
Log in

High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The purpose of the study was to develop a novel diet based on standard AIN93G diet that would be able to induce experimental obesity and impair immune regulation with high concentrations of both carbohydrate and lipids.

Methods

To compare the effects of this high sugar and butter (HSB) diet with other modified diets, male C57BL/6 mice were fed either mouse chow, or AIN93G diet, or high sugar (HS) diet, or high-fat (HF) diet, or high sugar and butter (HSB) diet for 11 weeks ad libitum. HSB diet induced higher weight gain. Therefore, control AIN93G and HSB groups were chosen for additional analysis. Regulatory T cells were studied by flow cytometry, and cytokine levels were measured by ELISA.

Results

Although HF and HSB diets were able to induce a higher weight gain compatible with obesity in treated mice, HSB-fed mice presented the higher levels of serum glucose after fasting and the lowest frequency of regulatory T cells in adipose tissue. In addition, mice that were fed HSB diet presented higher levels of cholesterol and triglycerides, hyperleptinemia, increased resistin and leptin levels as well as reduced adiponectin serum levels. Importantly, we found increased frequency of CD4+CD44+ effector T cells, reduction of CD4+CD25+Foxp3+ and Th3 regulatory T cells as well as decreased levels of IL-10 and TGF-β in adipose tissue of HSB-fed mice.

Conclusion

Therefore, HSB represents a novel model of obesity-inducing diet that was efficient in triggering alterations compatible with metabolic syndrome as well as impairment in immune regulatory parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337–50.

    Article  PubMed  CAS  Google Scholar 

  2. Heber D. An integrative view of obesity 1–4. Am J Clin Nutr. 2010;91:280–3.

    Article  Google Scholar 

  3. Yang H, Youm Y-H, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185:1836–45.

    Article  PubMed  CAS  Google Scholar 

  4. Ng S-F, Lin RCY, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467:963–6.

    Article  PubMed  CAS  Google Scholar 

  5. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring) 2011;19:1109–17.

  6. Flanagan AM, Brown JL, Santiago CA, Aad PY, Spicer LJ, Spicer MT. High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J Nutr Biochem. 2008;19:505–13.

    Article  PubMed  CAS  Google Scholar 

  7. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–20.

    Article  PubMed  CAS  Google Scholar 

  8. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet - Induced obesity in mice. Diabetes. 2010;59:1171–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  PubMed  CAS  Google Scholar 

  10. Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology. Science. 2007;317:627–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142:517–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15:921–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Zhang D, Christianson J, Liu Z-X, Tian L, Choi CS, Neschen S, et al. Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency. Cell Metab. 2010;11:402–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bourlier V, Bouloumie A. Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes Metab. 2009;35:251–60.

    Article  PubMed  CAS  Google Scholar 

  15. Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr. 2004;79:774–9.

    PubMed  CAS  Google Scholar 

  16. Ferreira AVM, Mario EG, Porto LCJ, Andrade SP, Botion LM. High-carbohydrate diet selectively induces tumor necrosis factor-α production in mice liver. Inflammation. 2011;34:139–45.

    Article  PubMed  CAS  Google Scholar 

  17. Oliveira MC, Menezes-Garcia Z, Henriques MCC, Soriani FM, Pinho V, Faria AMC, et al. Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity. 2013;21:E396.

    PubMed  CAS  Google Scholar 

  18. Morris MJ, Chen H, Watts R, Shulkes A, Cameron-Smith D. Brain neuropeptide Y and CCK and peripheral adipokine receptors: temporal response in obesity induced by palatable diet. Int J Obes (Lond). 2008;32:249–58.

    Article  CAS  Google Scholar 

  19. Heyne A, Kiesselbach C, Sahún I, McDonald J, Gaiffi M, Dierssen M, et al. An animal model of compulsive food-taking behaviour. Addict Biol. 2009;14:373–83.

    Article  PubMed  Google Scholar 

  20. Caimari A, Oliver P, Keijer J, Palou A. Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS. 2010;14:129–41.

    Article  PubMed  CAS  Google Scholar 

  21. Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123:1939–51.

    PubMed  CAS  Google Scholar 

  22. Kim MS, Choi M-S, Han SN. High fat diet-induced obesity leads to proinflammatory response associated with higher expression of NOD2 protein. Nutr Res Pract. 2011;5:219–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ilan Y, Maron R, Tukpah A-M, Maioli TU, Murugaiyan G, Yang K, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci USA. 2010;107:9765–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Oida T, Weiner HL. TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction. PLoS One. 2010;5:e15523.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao M, Zang B, Cheng M, Ma Y, Yang Y, Yang N. Differential responses of hepatic endoplasmic reticulum stress and inflammation in diet-induced obese rats with high-fat diet rich in lard oil or soybean oil. PLoS One. 2013;8:e78620.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.

    Article  PubMed  CAS  Google Scholar 

  27. Yang Z-H, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr. 2012;4:32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Pawar AS, Zhu X-Y, Eirin A, Tang H, Jordan KL, Woollard JR, et al. Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity. Obesity. 2015;23:399–407.

    Article  PubMed  CAS  Google Scholar 

  30. Wang C, Liao J. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87:81–6.

    Article  PubMed  CAS  Google Scholar 

  32. Jameel F, Phang M, Wood LG, Garg ML. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis. 2014;13:195.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr. 2011;2:261–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production. J Clin Invest. 2003;111:225–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68:975–81.

    Article  PubMed  CAS  Google Scholar 

  37. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffler U, Hobbie K, Wilson R, Bai R, Rahman A, Malarkey D, et al. Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine. 2009;36:311–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004;53:1253–60.

    Article  PubMed  CAS  Google Scholar 

  40. Kaminski DA, Randall TD. Adaptive immunity and adipose tissue biology. Trends Immunol. 2010;31:384–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.

    Article  PubMed  CAS  Google Scholar 

  42. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One. 2011;6:e16376.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Faria AMC, Weiner HL. Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets. 2006;5:179–90.

    Article  PubMed  CAS  Google Scholar 

  44. Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000;13:443–51.

    Article  PubMed  CAS  Google Scholar 

  45. Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev. 2006;17:97–106.

    Article  PubMed  CAS  Google Scholar 

  46. Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, et al. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25LAP+T cells. Nat Med. 2006;12:627–35.

    Article  PubMed  CAS  Google Scholar 

  47. Boulet LP. Asthma and obesity. Clin Exp Allergy. 2013;43:8–21.

    Article  PubMed  Google Scholar 

  48. Stabroth-Akil D, Leifeld L, Pfützer R, Morgenstern J, Kruis W. The effect of body weight on the severity and clinical course of ulcerative colitis. Int J Colorectal Dis. 2014;30:237–42.

    Article  PubMed  Google Scholar 

  49. Drew JE. Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proc Nutr Soc. 2012;71:175–80.

    Article  PubMed  CAS  Google Scholar 

  50. Wan YY, Flavell RA. The roles for cytokines in the generation and maintenance of regulatory T cells. Immunol Rev. 2006;212:114–30.

    Article  PubMed  CAS  Google Scholar 

  51. Chen X, Oppenheim JJ. Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int Immunopharmacol. 2011;11:1489–96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Esposito K, Pontillo A, Giugliano F, Giugliano G, Marfella R, Nicoletti G, et al. Association of low interleukin-10 levels with the metabolic syndrome in obese women. J Clin Endocrinol Metab. 2003;88:1055–8.

    Article  PubMed  CAS  Google Scholar 

  53. Gotoh K, Inoue M, Masaki T, Chiba S, Shimasaki T, Ando H, et al. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced inflammation in white adipose tissue and liver. Diabetes. 2012;61:1994–2003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med. 1997;3:37–48.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14:67–79.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Leiria LOS, Martins MA, Saad MJA. Obesity and asthma: beyond TH2 inflammation. Metabolism. 2014;64:172–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ilda Marçal de Souza for the excellent care of our animal facility, and to Lilian Gonçalves Teixeira for technical support in the diet design. This study had the following sources of financial support: FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant# 471571/2008-3). T.U.M. and J.L.Z. conceptualized and designed the experiments; M.C.G.M, V.D.M, L.S.H. and T.G.M. helped conducting the work; A.F.S. helped conducting the project and writing the paper, and A.M.C.F. designed and supervised the research project. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiani Uceli Maioli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Bernhard Gibbs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maioli, T.U., Gonçalves, J.L., Miranda, M.C.G. et al. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice. Inflamm. Res. 65, 169–178 (2016). https://doi.org/10.1007/s00011-015-0902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0902-1

Keywords

Navigation