Skip to main content
Log in

In vitro Effects of Plasma Acid on Proliferation of Rat Brain Endothelial Cells

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The proliferative activity of brain microvascular endothelial cells is regulated by a wide range of factors: regulatory molecules, toxic compounds, cell–cell interactions. Hypervascularization and the development of oxidative and nitrosative stress are important components in the pathogenesis of chronic neurodegeneration. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), in addition to their direct damaging effect on brain cells, significantly affect the proliferative activity and angiogenic potential of brain endothelial cells. In this study, the proliferative activity of the latter was assessed in in vitro experiments performed on a primary culture of rat brain endothelial cells using the xCELLigence protocol which enables real-time monitoring of cell proliferation for 24–72 h. Aqueous ammonia and thiocyanate solutions treated with non-equilibrium (non-thermal) plasma served as sources of RNS and ROS, respectively, and were added to the culture medium at various concentrations. We found that the presence of ROS and RNS in plasma acid suppresses cell proliferation, perhaps due to the dominant effects of cytotoxic peroxynitrite and products of its interaction with cellular proteins, while the presence of ammonia in a solution stimulates cell proliferation in a dose-dependent manner. The thiocyanate anion, which is present in a freshly prepared solution, reduces the inhibitory effect of plasma acid on endothelial cell proliferation, however, prolonged exposure to plasma acid with sodium thiocyanate exhibits a considerable cytotoxic potential. Thus, plasma acid affects the proliferative activity of brain endothelial cells in vitro. This activity is modulated in the presence of ammonia and thiocyanate, suggesting the involvement of oxidative and nitrosative stress in the mechanism of plasma acid action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3: 205–214. https://doi.org/10.1038/nrd1330

    Article  CAS  PubMed  Google Scholar 

  2. Enciu A-M, Gherghiceanu M, Popescu BO (2013) Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxidat Med Cell Longev 2013: 1–12. https://doi.org/10.1155/2013/297512

    Article  Google Scholar 

  3. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24: 325. https://doi.org/10.5607/en.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cobb CA, Cole MP (2015) Oxidative and nitrative stress in neurodegeneration. Neurobiol Disease 84: 4–21. https://doi.org/10.1016/j.nbd.2015.04.020

    Article  CAS  Google Scholar 

  5. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178–201. https://doi.org/10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Song K, Li Y, Zhang H, An N, Wei Y, Wang L, Tian C, Yuan M, Sun Y, Xing Y (2020) Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxidat Med Cell Longev 2020: 1–27. https://doi.org/10.1155/2020/4356386

    Article  CAS  Google Scholar 

  7. Nazari QA, Mizuno K, Kume T, Takada-Takatori Y, Izumi Y, Akaike A (2012) In vivo brain oxidative stress model induced by microinjection of sodium nitroprusside in mice. J Pharmacol Sci 120: 105–111. https://doi.org/10.1254/jphs.12143fp

    Article  CAS  PubMed  Google Scholar 

  8. Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV (2021) Blood–brain barrier and neurovascular unit in vitro models for studying mitochondria-driven molecular mechanisms of neurodegeneration. Int J Mol Sci 22: 4661. https://doi.org/10.3390/ijms22094661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim Y-W, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood, J Am Soc Hematol 123: 625–631. https://doi.org/10.1182/blood-2013-09-512749

    Article  CAS  Google Scholar 

  10. Teng R-J, Wu T-J, Bisig CG, Eis A, Pritchard KA, Konduri GG (2011) Nitrotyrosine impairs angiogenesis and uncouples eNOS activity of pulmonary artery endothelial cells isolated from developing sheep lungs. Pediatr Res 69: 112–117. https://doi.org/10.1203/PDR.0b013e318204dcb8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suárez I, Bodega G, Rubio M, Fernández B (2009) Induction of NOS and nitrotyrosine expression in the rat striatum following experimental hepatic encephalopathy. Metabol Brain Disease 24: 395–408. https://doi.org/10.1007/s11011-009-9154-5

    Article  CAS  Google Scholar 

  12. Wang R (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39: 227–232. https://doi.org/10.1016/j.tibs.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Thi M-HN, Shao P-L, Liao J-D, Lin C-CK, Yip H-K (2014) Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by NonThermal N2/Ar Micro-Plasma. Plasma Processes and Polymers 11: 1076–1088. https://doi.org/10.1002/ppap.201400072

    Article  CAS  Google Scholar 

  14. Vladimirov YuA, Proskurnina YeV (2015) Svobodnyye radikaly kak uchastniki regulyatornykh i patologicheskikh protsessov. Fundamental’nyye nauki—meditsine. Biofiz Med Tekhnol. MAKS Press, M. (In Russ).

    Google Scholar 

  15. Piskarev I (2016) Obrazovaniye dolgozhivushchikh aktivnykh produktov pod deystviyem izlucheniya plazmy iskrovogo razryada. Khimiya vysokikh energiy 50: 449–450. (In Russ).

    Google Scholar 

  16. Ivanova IP, Trofimova SV, Aristova NA, Arkhipova EV, Burkhina OE, Sysoeva VA, Piskarev IM (2012) Analysis of active products of spark discharge plasma radiation that determine biological effects in cells. Modern Technol Med 2012: 20–30. (In Russ).

    Google Scholar 

  17. Ivanova IP, Trofimova SV, Piskarev IM, Ichetkina AA, Burkhina OE, Sysoeva VA (2013) Effect of spark discharge plasma radiation on the modification of proteins and lipids. Basic Res 3: 572–575. (In Russ).

    Google Scholar 

  18. Ivanova IP, Trofimova SV, Burkhina OE, Piskarev IM (2015) Peroxynitrite complex production under pulsed spark gas-discharge plasma radiation in air. Res J Pharmac Biol Chem Sci 6: 1205–1219.

    CAS  Google Scholar 

  19. Piskarev I, Ivanova I, Trofimova S (2013) Chemical effects of self-sustained spark discharge: Simulation of processes in a liquid. High Energy Chem 47: 62–66. https://doi.org/10.1134/S0018143913020082

    Article  CAS  Google Scholar 

  20. Piskarev I, Ivanova I, Trofimova S (2013) Comparison of chemical effects of UV radiation from spark discharge in air and a low-pressure mercury lamp. High Energy Chem 47: 247–250. https://doi.org/10.1134/S0018143913050093

    Article  CAS  Google Scholar 

  21. Piskarev I, Ivanova I, Trofimova S, Aristova N (2012) Formation of active species in spark discharge and their possible use. High Energy Chem 46: 343–348. https://doi.org/10.1134/S0018143912050050

    Article  CAS  Google Scholar 

  22. Zietzer A, Niepmann ST, Camara B, Lenart MA, Jansen F, Becher MU, Andrié R, Nickenig G, Tiyerili V (2019) Sodium thiocyanate treatment attenuates atherosclerotic plaque formation and improves endothelial regeneration in mice. PloS one 14: e0214476. https://doi.org/10.1371/journal.pone.0214476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bozonet SM, Scott-Thomas AP, Nagy P, Vissers MC (2010) Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells. Free Radic Biol Med 49: 1054–1063. https://doi.org/10.1016/j.freeradbiomed.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  24. Muradyan G, Gudkova E, Khilazheva E, Morgun A, Malinovskaya N, Salmina A, Salmin V (2021) Effect of sliding discharge on proliferation and death of brain microvessel endothelial cells in vitro. Biomed Chem 67: 150–157. https://doi.org/10.18097/pbmc20216702150

    Article  CAS  Google Scholar 

  25. Mack J, Bolton JR (1999) Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobiol A: Chemistry 128: 1–13. https://doi.org/10.1016/S1010-6030(99)00155-0

    Article  CAS  Google Scholar 

  26. Liu Y, Xue Q, Tang Q, Hou M, Qi H, Chen G, Chen W, Zhang J, Chen Y, Xu X (2013) A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc Res 90: 199–205. https://doi.org/10.1016/j.mvr.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  27. Guan N, Deng J, Li T, Xu X, Irelan JT, Wang M-W (2013) Label-free monitoring of T cell activation by the impedance-based xCELLigence system. Mol Biosystems 9: 1035–1043. https://doi.org/10.1039/c3mb25421f

    Article  CAS  Google Scholar 

  28. Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ (2013) Effects of nitric oxide on cell proliferation: novel insights. J Am College Cardiol 62: 89–95. https://doi.org/10.1016/j.jacc.2013.03.070

    Article  CAS  Google Scholar 

  29. Kleinhans C, Barz J, Wurster S, Willig M, Oehr C, Müller M, Walles H, Hirth T, Kluger PJ (2013) Ammonia plasma treatment of polystyrene surfaces enhances proliferation of primary human mesenchymal stem cells and human endothelial cells. Biotechnol J 8: 327–337. https://doi.org/10.1002/biot.201200210

    Article  CAS  PubMed  Google Scholar 

  30. Durante W, Liu Xm, Peyton KJ (2017) Ammonia Promotes Endothelial Cell Survival via the Heme Oxygenase-1-mediated Release of Carbon Monoxide. The FASEB J 31: 689.2. https://doi.org/10.1016/j.freeradbiomed.2016.11.029

    Article  CAS  Google Scholar 

  31. Häussinger D, Görg B, Reinehr R, Schliess F (2005) Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metabol Brain Disease 20: 285–294. https://doi.org/10.1007/s11011-005-7908-2

    Article  CAS  Google Scholar 

  32. Forstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113: 1708–1714. https://doi.org/10.1161/circulationaha.105.602532

    Article  PubMed  Google Scholar 

  33. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun C-O, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98: 2604–2609. https://doi.org/10.1073/pnas.041359198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jo D, Kim BC, Cho KA, Song J (2021) The Cerebral Effect of Ammonia in Brain Aging: Blood–Brain Barrier Breakdown, Mitochondrial Dysfunction, and Neuroinflammation. J Clin Med 10: 2773. https://doi.org/10.3390/jcm10132773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adlimoghaddam A, Sabbir MG, Albensi BC (2016) Ammonia as a potential neurotoxic factor in Alzheimer’s disease. Front Mol Neurosci 9: 57. https://doi.org/10.3389/fnmol.2016.00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rigau V, Morin M, Rousset M-C, De Bock F, Lebrun A, Coubes P, Picot M-C, Baldy-Moulinier M, Bockaert J, Crespel A (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130: 1942–1956. https://doi.org/10.1093/brain/awm118

    Article  PubMed  Google Scholar 

  37. Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PloS one 6: e23789. https://doi.org/10.1371/journal.pone.0023789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones E, Munkley CG, Phillips ED, Stedman G (1996) Kinetics and equilibria in the nitric acid–nitrous acid–sodium thiocyanate system. J Chem Soc, Dalton Transact 9: 1915–1920. https://doi.org/10.1039/DT9960001915

    Article  Google Scholar 

  39. Prakash R, Somanath PR, El-Remessy AB, Kelly-Cobbs A, Stern JE, Dore-Duffy P, Johnson M, Fagan SC, Ergul A (2012) Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes 61: 1533–1542. https://doi.org/10.2337/db11-1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buxton GV, Stuart CR (1995) Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. J Chem Soc, Faraday Transact 91: 279–281. https://doi.org/10.1039/FT9959100279

    Article  CAS  Google Scholar 

  41. Aune TM, Thomas EL (1977) Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion. Eur J Biochem 80: 209–214. https://doi.org/10.1111/j.1432-1033.1977.tb11873.x

    Article  CAS  PubMed  Google Scholar 

  42. Chandler JD, Day BJ (2012) Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 84: 1381–1387. https://doi.org/10.1016/j.bcp.2012.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Y, Szép S, Lu Z (2009) The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases. Proc Natl Acad Sci USA 106: 20515–20519. https://doi.org/10.1073/pnas.0911412106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the resource base of the Center for Collective Use at the V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University.

Funding

This study was supported by the Ministry of Health of the Russian Federation under the state assignment to the V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University (AAAA-A19-119060690006-0).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (V.V.S., A.V.M., E.V.L.), data collection (E.D.Kh., A.V.M., V.A.K., V.V.S.), data processing (V.V.S., A.V.M.), writing and editing a manuscript (V.V.S.).

Corresponding author

Correspondence to V. V. Salmin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 7, pp. 917–930https://doi.org/10.31857/S0869813922070032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khilazheva, E.D., Lychkovskaya, E.V., Kutyakov, V.A. et al. In vitro Effects of Plasma Acid on Proliferation of Rat Brain Endothelial Cells. J Evol Biochem Phys 58, 1163–1173 (2022). https://doi.org/10.1134/S0022093022040196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040196

Keywords:

Navigation