Skip to main content
Log in

Enzymatic Component of the Glutathione System in Russian and Buryat Women Depends on the Menopausal Phase

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The study aimed to evaluate the state of the enzymatic component of the glutathione system in peri- and postmenopausal women of the Russian and Buryat ethnic groups. The study involved 86 female volunteers of Caucasian (ethnic group Russians, n = 52) and Mongoloid (ethnic group Buryats, n = 34) races aged from 45 to 60 years, with a peri- or postmenopausal status. The exclusion criteria were the use of hormone replacement therapy and antioxidant drugs, diseases of endocrine genesis, exacerbation of chronic diseases, premature early menopause, and surgical menopause. Glutathione S-transferase π concentration and glutathione reductase activity were assayed in blood serum, while glutathione peroxidase activity was assayed in erythrocyte lysates. A higher glutathione S-transferase π activity was revealed both in the peri- and postmenopausal Buryat women compared to the Russian ethnic group: 2617.47 [2249.89; 3270.49] ng/mL vs. 2025.73 [1457.93; 2818.66] ng/mL, respectively, in perimenopause (p = 0.034), and 2815.92 [2235.68; 3065.02] ng/mL vs. 1931.75 [1468.17; 2932.54] ng/mL, respectively, in postmenopause (p = 0.032). Between the menopausal phases, a higher glutathione reductase activity was found in postmenopausal vs. perimenopausal Russian women: 83.9 [74.6; 90.7] U/L vs. 75.5 [67.5; 80.2] U/L, respectively (p = 0.035). Thus, the enzymatic component of the glutathione system in menopausal women shows ethnospecificity toward glutathione S-transferase π and glutathione reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lumsden MA, Sassarini J (2019) The evolution of the human menopause. Climacteric 22(2): 111–116. https://doi.org/10.1080/13697137.2018.1547701

    Article  CAS  PubMed  Google Scholar 

  2. Cervellati C, Bergamini CM (2016) Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin Chem Lab Med 54(5): 739–753. https://doi.org/10.1515/cclm-2015-0807

    Article  CAS  PubMed  Google Scholar 

  3. Taleb-Belkadi O, Chaib H, Zemour L, Azzedine F, Belkacem C, Khedidja M (2016) Lipid profile, inflammation, and oxidative status in peri- and postmenopausal women. Gynecol Endocrinol 32(12): 982–985. https://doi.org/10.1080/09513590.2016.1214257

    Article  CAS  PubMed  Google Scholar 

  4. Circu M, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823(10): 1767–1777. https://doi.org/10.1016/j.bbamcr.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu B, Dong D (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 33(12): 656–668. https://doi.org/10.1016/j.tips.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  6. Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J (2018) Glutathione S-transferase π: potential role in antitumor therapy. Drug Des Devel Ther 12: 3535–3547. https://doi.org/10.2147/DDDT.S169833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scire A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T (2019) Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 45(2): 152–168. https://doi.org/10.1002/biof.1476

    Article  CAS  PubMed  Google Scholar 

  8. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Dolgikh MI, Astakhova TA, Semenova NV (2014) Gender differences in parameters of lipid metabolism and of level of antioxidants in groups of juveniles – the Even and the Europeans. J Evol Biochem Phys 50(1): 34–41. https://doi.org/10.1134/S0022093014010058

    Article  CAS  Google Scholar 

  9. Lammertyn L, Mels CM, Pieters M, Schutte AE, Schutte R (2015) Ethnic-specific relationships between haemostatic and oxidative stress markers in black and white South Africans: The SABPA study. Clinical and Experimental Hypertension 37(6): 511–517. https://doi.org/10.3109/10641963.2015.1013123

    Article  CAS  PubMed  Google Scholar 

  10. Darenskaya MA, Kolesnikova LI, Kolesnikov SI (2020) Etnicheskie aspekty metabolicheskih reakcij zhenshchin pri dizregulyacionnoj patologii. Izd-vo RAN, M. 186. (In Russ).

    Google Scholar 

  11. Mokhaneli MC, Fourie CM, Botha S, Mels CM (2016) The association of oxidative stress with arterial compliance and vascular resistance in a bi-ethnic population: the SABPA study. Free Radical Research 50(8): 920–928. https://doi.org/10.1080/10715762.2016.1201816

    Article  CAS  PubMed  Google Scholar 

  12. Morris AA, Zhao L, Patel RS, Jones DP, Ahmed Y, Stoyanova N, Gibbons GH, Vaccarino V, Din-Dzietham R, Quyyumi AA (2012) Differences in systemic oxidative stress based on race and the metabolic syndrome: the morehouse and emory team up to eliminate health disparities (META-health) study. Metabolic syndrome and related disorders 10(4): 252–259. https://doi.org/10.1089/met.2011.0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Semenova NV, Madaeva IM, Darenskaya MA, Kolesnikova LI (2019) Lipid peroxidation and antioxidant defense system in menopausal women of different ethnic groups. Human ecology 6: 30–38. https://doi.org/10.33396/1728-0869-2019-6-30-38

    Article  Google Scholar 

  14. Semenova NV, Madaeva IM, Darenskaya MA, Gavrilova OA, Zhambalova RM, Kolesnikova LI (2018) Lipid profile in menopausal women of two ethnic groups. Acta Biomedica Scientifica 3(3): 93–98. https://doi.org/10.29413/ABS.2018-3.3.14

    Article  Google Scholar 

  15. Ogunro PS, Bolarinde AA, Owa OO, Salawu AA, Oshodi AA (2014) Antioxidant status and reproductive hormones in women during reproductive, perimenopausal and postmenopausal phase of life. Afr J Med Med Sci 43 (1): 49–57.

    CAS  PubMed  Google Scholar 

  16. Klisic A, Kotur-Stevuljevic J, Kavaric N, Martinovic M, Matic M (2018) The association between follicle stimulating hormone and glutathione peroxidase activity is dependent on abdominal obesity in postmenopausal women. Eat Weight Disord 23(1): 133–141. https://doi.org/10.1007/s40519-016-0325-1

    Article  PubMed  Google Scholar 

  17. Ansar S, Alhefdhi T, Aleem AM (2015) Status of trace elements and antioxidants in premenopausal and postmenopausal phase of life: a comparative study. Int J Clin Exp Med 8(10): 19486–19490.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suhih GT, Smetnik VP, Yureneva SV, Ermakova EI, Chernuha GE, Yakushevskaya OV (2016) Menopauza i klimaktericheskoe sostoyanie u zhenshchin. Klinicheskie rekomendacii. NMIC AGP im VI Kulakova, M. 38. (In Russ).

    Google Scholar 

  19. Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830(5): 3217–3266. https://doi.org/10.1016/j.bbagen.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  20. Zarebska A, Jastrzebski Z, Ahmetov II, Zmijewski P, Cieszczyk P, Leonska-Duniec A, Sawczuk M, Leznicka K, Trybek G, Semenova EA, Maciejewska-Skrendo A Physiol Genomics. (2017) GSTP1 c.313A>G polymorphism in Russian and Polish athletes 49(3): 127–131. https://doi.org/10.1152/physiolgenomics.00014.2016.

    Article  CAS  Google Scholar 

  21. Qi G, Han C, Zhou Y, Wang X (2022) Allele and genotype frequencies of CYP3A4, CYP3A5, CYP3A7, and GSTP1 gene polymorphisms among mainland Tibetan, Mongolian, Uyghur, and Han Chinese populations. Clin Exp Pharmacol Physiol 49(2): 219–227. https://doi.org/10.1111/1440-1681.13604. Epub 2021 Nov 2.

    Article  CAS  PubMed  Google Scholar 

  22. Karaca S, Karaca M, Cesuroglu T, Erge S, Polimanti R (2015) GSTM1, GSTP1, and GSTT1 genetic variability in Turkish and worldwide populations. Am J Hum Biol 27(3): 310–316. https://doi.org/10.1002/ajhb.22671.

    Article  PubMed  Google Scholar 

  23. Belyaeva EV, Ershova OA, Astakhova TA, Bugun OV (2017) Polymorphism of glutathione-S-transferase genes in ethnic groups living in Eastern Siberia. Vavilov Journal of Genetics and Breeding 21(5): 576–580. https://doi.org/10.18699/VJ17.274

    Article  Google Scholar 

  24. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P, Bouchardy C, Breskvar K, Brockmoller J, Cascorbi I, Clapper ML, Coutelle C, Daly A, Dell’Omo M, Dolzan V, Dresler CM, Fryer A, Haugen A, Hein DW, Hildesheim A, Hirvonen A, Hsieh LL, Ingelman-Sundberg M, Kalina I, Kang D, Kihara M, Kiyohara C, Kremers P, Lazarus P, Le Marchand L, Lechner MC, van Lieshout EM, London S, Manni JJ, Maugard CM, Morita S, Nazar-Stewart V, Noda K, Oda Y, Parl FF, Pastorelli R, Persson I, Peters WH, Rannug A, Rebbeck T, Risch A, Roelandt L, Romkes M, Ryberg D, Salagovic J, Schoket B, Seidegard J, Shields PG, Sim E, Sinnet D, Strange RC, Stücker I, Sugimura H, To-Figueras J, Vineis P, Yu MC, Taioli E (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 12 (10): 1239–1248.

    Google Scholar 

  25. Lakhdar R, Denden S, Mouhamed MH, Chalgoum A, Leban N, Knani J, Lefranc G, Miled A, Chibani JB, Khelil AH (2011) Correlation of EPHX1, GSTP1, GSTM1, and GSTT1 genetic polymorphisms with antioxidative stress markers in chronic obstructive pulmonary disease. Exp Lung Res 37(4): 195–204. https://doi.org/10.3109/01902148.2010.535093

    Article  CAS  PubMed  Google Scholar 

  26. Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA (1998) Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19(2): 275–280. https://doi.org/10.1093/carcin/19.2.275.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Ahn YJ, Asmis R (2020) Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol 31: 101410. https://doi.org/10.1016/j.redox.2019.101410

    Article  CAS  PubMed  Google Scholar 

  28. Fu ZD, Csanaky IL, Klaassen CD (2021) Effects of aging on mRNA profiles for drug-metabolizing enzymes and transporters in livers of male and female mice. Drug Metab Dispos 40(6): 1216–1225. https://doi.org/10.1124/dmd.111.044461

    Article  CAS  Google Scholar 

  29. Lu H, Gunewardena S, Cui JY, Yoo B, Zhong X, Klaassen CD (2013) RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes in mice. Drug Metab Dispos 41(4): 844–857. https://doi.org/10.1124/dmd.112.050211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu S, Hou D, Liu J, Ji L (2018) Age-associated changes in GSH S-transferase gene/proteins in livers of rats. Redox Rep 23(1): 213–218. https://doi.org/10.1080/13510002.2018.1546985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mancini A, Festa R, Di Donna V, Leone E, Littarru GP, Silvestrini A, Meucci E, Pontecorvi A (2010) Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes. J Endocrinol Invest 33(6): 422–433. https://doi.org/10.1007/BF03346615.

    Article  CAS  PubMed  Google Scholar 

  32. Pisareva LF, Odintsova IN, Ananina OA, Stukanov SL, Stolyarova VA, Pavlenko OA, Samoilova YuG, Oleinik OA (2011) Ethnic features of anthopometrical indicators of the hormonal status of women living in siberian region. Sibirskij medicinskij zhurnal 26(4-2): 222–226. (In Russ).

    Google Scholar 

  33. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Sholokhov LF, Semenova NV, Osipova EV, Kolesnikov SI (2016) Indicators of pituitary-thyroid system and lipid metabolism in female representatives of the Buryat ethnos and Europeoids J Evol Biochem Phys 52(4): 299–304. https://doi.org/10.1134/S0022093016040049

  34. Sanchez RI, Mesia-Vela S, Kauffman FC (2003) Induction of NAD(P)H quinone oxidoreductase and glutathione S-transferase activities in livers of female August-Copenhagen Irish rats treated chronically with estradiol: comparison with the Sprague-Dawley rat. J Steroid Biochem Mol Biol 87(2-3): 199–206. https://doi.org/10.1016/j.jsbmb.2003.08.007.

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Torres I, Guarner-Lans V, Zúñiga-Muñoz A, Velázquez Espejel R, Cabrera-Orefice A, Uribe-Carvajal S, Pavón N (2016) Effect of cross-sex hormonal replacement on antioxidant enzymes in rat retroperitoneal fat adipocytes. Oxid Med Cell Longev 2016: 1527873. https://doi.org/10.1155/2016/1527873.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Faustino LC, Almeida NA, Pereira GF, Ramos RG, Soares RM, Morales MM, Pazos-Moura CC, Ortiga-Carvalho TM (2012) Thyroid hormone and estradiol have overlapping effects on kidney glutathione S-transferase-α gene expression. Am J Physiol Endocrinol Metab 303(6): E787–797. https://doi.org/10.1152/ajpendo.00223.2012.

    Article  CAS  PubMed  Google Scholar 

  37. van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6(8): 647–658. https://doi.org/10.1016/S2213-8587(18)30026-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cakir T, Goktas B, Mutlu MF, Mutlu I, Bilgihan A, Erdem M, Erdem A (2016) Advanced oxidation protein products and malondialdehyde - the new biological markers of oxidative stress—are elevated in postmenopausal women. Ginekol Pol 87(5): 321–325. https://doi.org/10.5603/GP.2016.0001

    Article  PubMed  Google Scholar 

  39. Zovari F, Parsian H, Bijani A, Moslemnezhad A, Shirzad A (2020) Evaluation of Salivary and Serum Total Antioxidant Capacity and Lipid Peroxidation in Postmenopausal Women. Int J Dent 2020: 8860467. https://doi.org/10.1155/2020/8860467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Razygraev AV, Petrosyan MA, Tumasova ZhN, Taborskaya KI, Polyanskikh LS, Baziian EV, Balashova NN (2019) Activity of glutathione peroxidase in rat blood plasma and serum: postnatal and aging-associated alterations. Advances in Gerontology 32(1-2): 38–44. (In Russ).

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was implemented within the scheduled research program of the SCFHHR (121022500180-6) using the equipment of the Collective Research Center “Center for the Development of Progressive Personalized Technologies for Health” (SCFHHR, Irkutsk).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (N.V.S., L.I.K.); data collection (N.V.S., I.M.M.); data processing (N.V.S., A.S.B.); writing and editing the manuscript (N.V.S., I.M.M.); ultimate approval of the manuscript (L.I.K.).

Corresponding author

Correspondence to N. V. Semenova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 4, pp. 284–290https://doi.org/10.31857/S004445292204009X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, N.V., Brichagina, A.S., Madaeva, I.M. et al. Enzymatic Component of the Glutathione System in Russian and Buryat Women Depends on the Menopausal Phase. J Evol Biochem Phys 58, 971–978 (2022). https://doi.org/10.1134/S0022093022040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040032

Keywords:

Navigation